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Abstract Evolving controllers for multilegged robots in

simulation is convenient and flexible, making it possible to

prototype ideas rapidly. However, transferring the resulting

controllers to physical robots is challenging because it is

difficult to simulate real-world complexities with sufficient

accuracy. This paper bridges this gap by utilizing the

Evolution of Network Symmetry and mOdularity (ENSO)

approach to evolve modular neural network controllers that

are robust to discrepancies between simulation and reality.

This approach was evaluated by building a physical quad-

ruped robot and by evolving controllers for it in simulation.

An approximate model of the robot and its environment was

built in a physical simulation and uncertainties in the real

world were modeled as noise. The resulting controllers

produced well-synchronized trot gaits when they were

transferred to the physical robot, even on different walking

surfaces. In contrast to a hand-designed PID controller, the

evolved controllers also generalized well to changes in

experimental conditions such as loss of voltage and were

more robust against faults such as loss of a leg, making them

strong candidates for real-world applications.

Keywords Modular controller � Symmetry �
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1 Introduction

Imagine having to design a multilegged robot to explore

Mars. Such a robot could navigate the rugged terrains of

Mars better than a wheeled robot, but it is more difficult to

control. The controller must coordinate the robot’s legs

properly, generating robust gaits to negotiate different

terrains effectively while maintaining stability. Moreover,

the robot should be robust to different environmental

conditions, wear and tear, and even failure like losing one

or more legs, to reliably complete its mission.

Research on designing controllers for multilegged

robots began in the 1980s [1, 6, 29] and continues actively

both in academia and industry [3, 8, 15, 19]. The control-

lers for state-of-the-art robots are often designed by hand,

requiring extensive analysis of the sensor-motor systems

and body-limb dynamics [3, 8, 15, 19, 29]. This process is

generally difficult and brittle because it is hard to anticipate

all operating conditions.

Therefore, automatic design methods utilizing learning

techniques such as evolution are a promising alternative

[2, 4, 14, 35]. These methods typically evaluate controller

fitness by simulating the physical behavior of robots and

their environments. Such experiments are useful because

they allow testing a range of conditions quickly and effec-

tively without damaging expensive hardware components

of the robot. However, simulation may not always produce

accurate enough results, making it difficult to transfer the

evolved controller to the physical robot [22, 23].

This paper evaluates the hypothesis that controllers

evolved in an approximate simulation can be transferred

successfully to the physical robot if the evolved controllers

are robust enough. An approximate simulation is first made

by modeling the weight distribution of the robot and the

uncertainties in its sensors and actuators. An approach
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called Evolution of Network Symmetry and mOdularity

[ENSO; 33, 35, 36] is then utilized to evolve controllers

that transfer robustly from simulation to reality. This

method was demonstrated on a physical quadruped robot

that was designed and built using rapid prototyping tech-

nology. The evolved controllers produced the same gaits

both in simulation and on the physical robot. Moreover,

they generalized better to different experimental conditions

and demonstrated better fault tolerance than a hand-

designed PID controller, suggesting that such evolved

controllers are useful for real-world applications.

2 Background

This section reviews prior work on evolving controllers for

physical robots and summarizes the ENSO approach that

this paper utilizes to evolve controllers.

2.1 Evolving controllers for physical robots

It is possible to evolve controllers by evaluating their fit-

ness directly on the real robot instead of in simulation [11,

16, 20, 37, 40]. However, performing thousands of such

fitness evaluations in hardware may be impractical for

several reasons [23]. First, hardware evaluations are slow,

resulting in long evolutionary run times. Second, they

cause wear and tear on the robot, making hardware failures

likely and user intervention to repair them necessary.

Third, the controllers created by evolution through random

variations may produce abnormal actuator signals that can

crash or damage the robot.

Therefore, a good alternative is to evaluate controller

fitness in simulation and then transfer only the final,

evolved controller to the physical robot. However, trans-

ferring such controllers evolved in simulation to the

physical robot is challenging [7, 22, 23]. The main reason

is that it is difficult to simulate physical properties such as

friction and sensor and actuator characteristics with high

enough fidelity to reproduce the simulated behaviors on

real robots. In order to address this issue, researchers have

developed several methods that improve the results of

evolution in simulation by performing only a few experi-

ments on the real robot.

A straightforward method is to fine-tune the controller

behaviors by continuing evolution on the real robot for a

few more generations [24, 25]. However, this method may

be ineffective in correcting behaviors that have evolved to

exploit flaws in the simulation. A better alternative is to

make such behaviors less likely to evolve by incorporating

transfer experiments from the beginning of evolution, e.g.

by utilizing a multi-objective evolutionary algorithm that

optimizes both a task-dependent controller fitness as well

as a measure of how well the controller transfers from

simulation to reality [21]. In any given generation, this

method chooses at most one controller based on behavioral

diversity to be evaluated on the real robot, requiring only a

small number of hardware evaluations.

Other methods utilize the information they gather from a

few experiments on the real robot to build a more realistic

simulator, typically in one of two ways: (1) Experiments

are performed on the real robot before running evolution to

collect samples of the real world by recording sensor

activations [24, 25]. When controllers are evaluated later

during evolution, these samples are utilized to set the

simulated sensor activations accurately. (2) Experiments

are performed on the real robot during evolution to co-

evolve the simulator and the controller, making an initially

crude simulation more and more accurate [5, 7, 38].

In contrast to the above methods, this paper proposes to

bridge the simulation-reality gap simply by creating con-

trollers that are robust to small discrepancies between

simulation and reality. It utilizes the ENSO approach [33,

35, 36], which evolves controllers modeled as coupled cell

systems to provide theoretical guarantees of robustness.

Therefore, simulation accuracies sufficient for ENSO can

be obtained easily by approximating the morphology and

mass distribution of the real robot with cylindrical and

rectangular blocks, without performing any hardware

experiments either before or during evolution (Sect. 3.2).

Evolving controllers in an accurate enough simulation is

often insufficient to transfer them successfully to the real

world because of uncertainties in sensor activations and

actuator responses. However, past work has shown that

evolution can adapt controllers to such uncertainties by

modeling them as noise in the simulation [13, 17, 18, 24].

The same idea is utilized in this paper, focusing on

uncertainties in how the motors respond to control signals.

The resulting controllers transfer successfully to the

physical robot, producing the same behaviors both in

simulation and on the physical robot. The ENSO approach

that is used to evolve these controllers is discussed next.

2.2 The ENSO approach

The controller for a multilegged robot can be implemented

as a system of interconnected neural network modules,

each controlling a different leg [1, 34]. Some of these

modules and interconnections may be identical, resulting in

symmetries, i.e. permutations of the modules that leave

their interconnection graph invariant (Fig. 1). Symmetries

can be analyzed using group theory to show that they

determine the type of gaits that the controller can produce

[9]. However, designing the appropriate symmetries by

hand is often difficult and may even be infeasible in the

general case [35]. Moreover, the parameters of the neural
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network have to be optimized together with its symmetries.

The ENSO approach was designed to evolve solutions to

such problems automatically [33, 35, 36], and it is there-

fore utilized in this paper.

ENSO initializes evolution with a population of maxi-

mally symmetric solutions (Fig. 2): They have the simplest

possible structure, consisting of identical modules and

interconnections. This structure is represented by a colored

graph with identical vertices and edges. During evolution,

group-theoretic mutations [33, 35, 36] break their sym-

metries systematically, thus exploring less symmetric,

more complex solutions with different types of modules

and interconnections. Each such mutation creates a new

graph with more colors such that its symmetry group is a

random maximal subgroup of the original symmetry group.

ENSO organizes the colors created by successive sym-

metry (color) mutations as a tree. Each such tree is a

genotype for evolution. The leaf nodes of this tree represent

the colors of identical vertices and edges of the phenotype

graph, which in turn represents a neural network (Fig. 2a).

In particular, each leaf node specifies which vertices or

edges have that color and stores the corresponding set of

neural network parameters, i.e. the biases and connection

weights of the module network (for vertex color) or the

connection weights between modules (for edge color).

Symmetry mutations produce structural changes in the

phenotype graph by partitioning the vertex or edge set of

leaf nodes and creating a new child color for each part of

the partition (Fig. 2b). Structural changes are also pro-

duced by enabling or disabling edges of the same color

using edge-toggle mutations. Interleaving these two types

of structural mutations with parameter mutations optimizes

the modules and interconnections of simpler solutions first

and elaborates on them to create more complex solutions

only when necessary. Moreover, the systematic, symmetry-

breaking mutations constrain the search to promising

symmetries, making evolution more effective than mutat-

ing symmetry unsystematically [33, 35, 36].

These features make it possible for ENSO to evolve

complex modular systems such as the quadruped controller

illustrated in Fig. 3. All four modules of this controller

utilize the same two-layered neural network architecture

(Fig. 3a). Each module’s input is the joint angle of the leg

it controls. It can be represented by the angle itself, or by

the sine and cosine of the angle; the sine and cosine are

actually more robust (because they are continuous), and

were used to obtain the results discussed in Sect. 4. The

module’s output is the desired angular velocity of that leg.

The full controller network is obtained by connecting the

four modules to each other such that each module receives

input from all the other modules (Fig. 3b).

The phenotype graph representing the symmetries of the

controller network also represents a central pattern gener-

ator, or coupled cell system, i.e. a dynamical system

capable of generating robust periodic oscillations for

modeling quadruped gaits [9]. Therefore, ENSO can design

effective controllers by evolving their symmetries in

addition to their parameters, as demonstrated previously in

physically realistic simulations of a quadruped [35, 36].

Symmetry evolution was especially advantageous when the

appropriate symmetries are difficult to determine manually,

such as on an inclined ground. In particular, ENSO evolved

gaits that were significantly faster and also generalized

better than those evolved with only parameter mutations on

hand-designed symmetries. Moreover, the group-theoretic

symmetry mutations of ENSO produced smoother and

better coordinated gaits than those produced using arbitrary

symmetry mutations. Since the ability to evolve such

robust and regular gaits is important for real-world appli-

cations, ENSO is a promising approach for designing dis-

tributed controllers for real robots. This paper investigates

this hypothesis by extending previous simulation results, as

will be described next.

3 Methods

A physical quadruped robot was designed and fabricated to

evaluate the ENSO approach in real-world applications.

This section discusses its design, simulation, and control.

Fig. 1 Example symmetries of a modular neural network controller

for a quadruped robot. The four controller modules and their

interconnections can be represented as the vertices and edges of a

colored graph. Vertices and edges of the same color (indicated by line
style) are identical, each color representing a particular combination

of neural network parameters. A graph symmetry is any permutation

of vertices under which the edge colors remain the same. Both graphs

in this figure have vertices of the same color. Moreover, all edges of

graph GA have the same color, while edges of graph GB have different

colors. Therefore, any permutation of the vertices of graph GA is a

symmetry. In contrast, only the permutations (1 2)(3 4) and (1 3)

(2 4), and their compositions are symmetries of graph GB. The set of

all symmetries of a graph forms a group. For example, the symmetry

group of graph GA is the symmetric group S4 and that of the less

symmetric graph GB is a subgroup of S4 called the dihedral group D2:
The symmetry group of the controller determines the type of gaits that

it can produce [9]
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3.1 Physical robot

The physical robot was designed with two constraints: (1)

it must be similar to the simulated robots that were previ-

ously studied using ENSO [35, 36], and (2) it must be

possible to prototype it quickly with parts that can be

purchased or fabricated easily. While some parts of the

robot such as the servo motors and the controller board to

operate the motors were available commercially, other

parts such as its body and legs were custom-designed and

fabricated to fit the commercial parts.

Each leg of the robot is attached to a Dynamixel AX-12?

servo motor manufactured by Robotis [30]. The AX-12?

provides angular position feedback, and can be made to

rotate continuously by specifying the desired angular

velocity, thus matching the inputs and outputs of the neural

network controllers that ENSO evolves. The evolved con-

troller runs on a Robotis CM-2? microcontroller circuit

board, which provides an interface to communicate with the

Dynamixel motors through a daisy-chain serial connection.

The AX-12? motors are mounted on a rectangular body

using a wedge-shaped piece to tilt their axes of rotation 20�
from the vertical (Fig. 4). The legs also slant 20� from their

respective motor axes, making it possible for the robot to

walk by rotating its legs continuously. The body, the

wedge, and the leg were designed using SolidWorks [31], a

program for computer aided design. The body was then cut

from acrylic using a laser cutter and the wedges and the

legs were fabricated in an Objet Eden 260 V [26] rapid-

prototyping 3D printer. The circuit board is mounted on the

top side of the body and is powered by a 12 V lithium-ion

battery attached to its bottom side by Velcro.

This robot was then modeled in a physics simulation for

evolving neural network controllers using ENSO. The

simulation utilized OPAL [28], an abstraction library on

top of the Open Dynamics Engine (ODE) [27], and is

described in detail next.

3.2 Simulation

The robot’s legs were modeled as cylinders with capped

ends, while its body was assembled from several rectan-

gular boxes that approximate different body parts (Fig. 5).

These cylinders and boxes have the same dimensions and

the same relative angles as the corresponding parts in the

physical robot. The leg angles used as controller input

are measured from the same vertical leg positions.

Moreover, densities were assigned to the parts such that

they have the same mass in both simulation and the real

robot. As a result, the simulation utilizes the same

approximate morphology and mass distribution as the

physical robot.

(a)

(b)

Fig. 2 Examples of genotype, phenotype, network module, and color

mutation. ENSO uses a tree of colors as genotype (left). Each leaf of

this tree has a unique color, and represents a set of vertices or edges of

the phenotype graph (middle) that have the same parameter values.

The vertices and edges of the phenotype graph represent the modules

of a neural network and the connections between them (right). Their

parameters (stored in the genotype) consist of node biases and

connection weights for each module network (vertex) and weights for

each connection between modules (edge). Each module has a fixed

architecture with a layer of hidden nodes fully connected to its inputs

and outputs. A connection from another module (not shown) is

implemented by fully connecting its input layer to the hidden layer of

the target module. a At the beginning of evolution, each genotype in

the population represents a maximally symmetric phenotype graph

with symmetry group S4: All vertices of this graph have the same

color (solid, represented by the leaf on the left) and all its edges have

the same color (alternating dots and dashes, represented by the leaf on

the right), implying that all modules are identical and all connections

between them are also identical. b A color mutation breaks the

phenotype graph symmetry to D4; which is a maximal subgroup of

S4: As a result, two child nodes are created for the node representing

the set of edges, i.e. the set of edges is partitioned into two and each

part is colored differently (dotted and dashed). Since each color is

associated with a different combination of parameter values, the

mutated phenotype graph represents two types of connections

between network modules. Such color mutations, when combined

with parameter mutations, make it possible to evolve symmetric and

modular neural networks efficiently
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In addition to the morphology, the sensor and actuator

characteristics of the AX-12? motors were also modeled.

The motor can sense its angular position if it is in the [0,

300] degree range (Fig. 6). However, it does not give valid

position feedback for angles between 300� and 360�. Since

the neural network controllers take angular positions as

inputs, the sensor reading is interpolated when the motor is

in this blind zone. In fact, the sensor reading is calculated

the same way for all angular positions from an estimate of

the angular velocity, which gets updated only when the

angle is in the valid range. Exponential smoothing is

applied to this estimate to filter out noise and discontinu-

ities caused by any discrepancy between the estimated and

actual angular velocities when the motor emerges from the

blind zone.

The response of the motor to the angular velocity con-

trol signals from the neural network is more difficult to

model accurately. In particular, the angular velocity of the

motor drifts significantly over time for a constant control

signal. This stochastic drift can change the periodic tra-

jectory of the controller, thus disrupting the gait of the

robot. Such uncertainties can be handled by adding noise to

the simulation, making it possible for evolution to adapt the

controllers suitably [13, 17, 22]. Two types of Gaussian

noise were added: The first type models fluctuations about

the mean with standard deviation 2.5%. The second type of

noise models drifts in the mean; it is therefore larger in

magnitude (standard deviation 20%), but it is applied only

a few times in each evaluation.

(a)

(b)

Fig. 3 Modular controller network for a quadruped robot. The input

to each module is the angle (or its sine and cosine) of the leg it

controls, and the output is the desired angular velocity of that leg. The

full controller network consists of four such modules, each module

receiving input from all the other modules. The symmetries of these

modules and their connectivity are represented by a phenotype graph.

At the beginning of evolution, this graph has identical vertices

(modules) and edges (interconnections), i.e. all vertices and edges

have the same combination of network parameters. ENSO discovers

effective controllers by breaking symmetry to create new types of

vertices and edges, and by optimizing their initially random network

parameters. a Network module and the initial phenotype graph. b Full

controller network consisting of four modules

Fig. 4 Assembled physical quadruped robot. The Dynamixel AX-

12? motors rotate the legs of the robot and are mounted on the four

corners of its rectangular acrylic body, which has attachment points in

the middle for a future hexapod extension. The legs make 20� with the

axis of rotation of their respective motors, tracing cones as they rotate.

The motor axes also have a 20� sideways tilt from the vertical. As a

result, rotating the legs raises and lowers them and can produce

locomotion when they make contact with the ground. A control

program synchronizes the rotation of the legs to produce locomotion

and runs on the CM-2? circuit board mounted on top of the body.

The board is powered by a 12 V lithium-ion battery attached to the

under-side of the body. Videos of experiments using this robot can be

seen at the website http://nn.cs.utexas.edu/?enso-realrobots

Fig. 5 Simulation model of the physical quadruped robot. This

model simulates the morphology and dynamics of the physical robot

in Fig. 4. The legs were modeled as capped cylinders and the other

parts were approximated as rectangular boxes with the same

dimensions. The weights of these shapes were then matched with

those of the corresponding parts of the physical robot. As a result, this

model represents the weight distribution of the physical robot with

sufficient accuracy for simulation
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The accuracy of the motor in representing its angular

position and velocity is also included in the simulation. The

motor represents both variables with an integer value in the

range [0, 1023]. The precision of these variables in simu-

lation is therefore downgraded from floating point preci-

sion to match the actual precision on this robot. Moreover,

the neural network controller reads the positions and

updates the velocities at the same frequency in both the

simulation and the real robot.

The controller evolved in simulation in the above

manner is transferred to the real robot by programming the

CM-2? circuit board with it, as described next.

3.3 Control programs

The CM-2? circuit board contains an ATmega128 CPU,

which is an 8-bit microcontroller with 128 KB of on-chip

programmable flash memory. Running the programs stored

in its memory can activate the motors of the robot.

Therefore, the evolved neural network controller is inter-

faced with the motors by converting it to a C-language

program and invoking it from a control loop similar to that

used in simulation. This C program is then cross-compiled

for the ATmega128 using the GNU compiler toolchain and

downloaded to the CM-2? board through an RS-232 serial

connection.

This facility for writing control programs in C was also

utilized to hand-code a baseline controller for comparing

with the evolved controllers. The hand-designed controller

replaces the neural network in the control loop with a PID

controller that also controls the leg angular velocities uti-

lizing feedback of leg positions. Thus, the hand-designed

controller also benefits from the mechanism mentioned in

Sect. 3.2 for interpolating and smoothing sensor readings of

leg positions. It computes the error signals for PID control

as the difference between the actual leg positions and the

desired leg positions for obtaining uniform leg angular

velocities.

The results of experiments comparing this controller

with the evolved controllers are described in the next

section.

4 Results

The gaits produced by the evolved and hand-designed

controllers were evaluated for walking on flat ground (1)

when all four legs of the robot are functional and (2) when

one leg is disabled to simulate a real-world motor failure.

The controllers produced in the first experiment were

evaluated further for generalization by reducing the max-

imum speed of the motors and by initializing one of the

legs with a large error. In each experiment, generalization

was also tested by placing the robot on different surfaces.

These experiments and the resulting gaits are discussed in

the following subsections. Videos of example gaits can be

seen at http://nn.cs.utexas.edu/?enso-realrobots.

4.1 Experimental setup

In each evolutionary run, the initial population of controller

networks had the architecture depicted in Fig. 3. Their

connection weights were set randomly within (-2, 2),

neuron biases to 0, and neuron sigmoid slopes to 1. During

evolution, these parameters were mutated with Gaussian

perturbations (with r = 0.2) acting with a specified prob-

ability (0.5). All edges were enabled in the phenotype

graphs of the initial controllers, and mutations toggled

them with a specified probability (0.1). In each generation,

an offspring was created by first selecting a parent in a two-

way tournament, and then applying either a parameter

mutation, an edge-toggle mutation, or a symmetry muta-

tion. Parameter mutations were 100 times more likely and

edge-toggle mutations were ten times more likely than

symmetry mutations. Each symmetry mutation created five

offspring, all having the same symmetry, and their newly

created parameters were initialized randomly. In addition,

the network with the best fitness was copied without

change to the next generation. A population size of 200

was used in all experiments. These particular settings were

found to work well empirically and small variations did not

produce a noticeable impact on the evolved results.

Each network was evaluated in a simulation (Sect. 3.2)

in which the network controlled the locomotion of a robot.

When the robot was initially placed in the simulation

environment, its longitudinal and lateral axes were aligned

with the coordinate directions of the ground plane. The

simulation was then carried out for one minute of simulated

Fig. 6 Angular position sensor readings of the Dynamixel AX-12?

motor. The angular position sensor of the motor provides an integer

valued reading in the range [0, 1023] when the motor is in the [0, 300]

degree range; angles outside this range produce invalid sensor

readings and are therefore interpolated. Reprinted with permission

from Robotis [30]; annotations edited
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time with step size 0.01s, after which the fitness of the

controller network was calculated as the distance traveled

by the robot along the longitudinal axis. This fitness

measure ensured that the controller networks were rewar-

ded for moving forward in a straight line.

For all experiments, evolution was run for 500 genera-

tions and repeated 10 times, each time with a different

random number seed. The following subsections discuss

the results of each experiment in detail.

4.2 All legs enabled

Figure 7 shows the phenotype graph of a champion neural

network controller that ENSO evolved by utilizing the

simulation model described in Sect. 3.2. Its symmetry

group is similar to that of the graphs that ENSO evolved for

a simpler simulated quadruped in prior work [35]. There-

fore, it generates a similar, well-synchronized trot gait

(Fig. 8a), thus extending the previous results to a more

complex and realistic robot model.

Moreover, transferring this controller to the physical

robot reproduces the same gait accurately (Fig. 8b). The

robot walks smoothly in a straight line even on very dif-

ferent surfaces such as linoleum and carpet, demonstrating

that ENSO can evolve such robust controllers that transfer

successfully from simulation to real robots.

The hand-designed PID controller was also tested on the

real robot with a reference waveform for a trot gait having

approximately the same period as the evolved controller

(Fig. 9). The legs are first positioned on the reference

waveform so that there is no error for the controller to

correct when it starts. Thereafter, the PID mechanism of

the controller corrects small errors by speeding up or

slowing down the legs to keep them aligned with the ref-

erence waveform. As a result, it produces a trot gait similar

to the evolved controller. However, it is not as robust and

does not generalize as well as the evolved controller, as

demonstrated by the experiments discussed next.

4.3 Generalization to reduced motor speed

The maximum leg angular velocity that the motors can

produce depends on the conditions in which the robot

operates. For example, it decreases when the input voltage

to the motor decreases as a result of e.g. low battery charge

or temperature [12, 39]. The challenge for the controller is

to keep the legs synchronized and to keep the robot

walking effectively even in such conditions. The hand-

designed and evolved controllers were tested for their

ability to generalize to such conditions by reducing the

maximum angular velocity that the motors produce.

The hand-designed controller fails, losing leg synchro-

nization, even for a small (10%) reduction in the maximum

angular velocity (Fig. 10a). It fails because the legs can no

longer move fast enough to keep up with the reference

waveform. Slowing down the waveform can correct the

Fig. 7 Phenotype graph of a champion neural network controller

evolved by ENSO. This graph has symmetry group similar to the

graphs that ENSO evolved for a simpler simulated quadruped in prior

work [35]. As a result, it generates a similarly well-coordinated trot

gait and it transfers well from simulation to the real robot (Fig. 8)

(a)

(b)

Fig. 8 A trot gait evolved in simulation and transferred to the real

robot. The plots show the four leg angles of the robot in the first 12 s.

They were produced by the controller with the phenotype graph

illustrated in Fig. 7. In both plots, after the controller reaches a steady

state in about four seconds, it maintains synchrony and phase

relations between the legs, producing a well-coordinated trot gait.

This gait works on various surfaces robustly. Both plots are very

similar, indicating that the controller produces the same walking

behavior in both the simulated model and the real robot. a Simulated

robot. b Real robot
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problem, but doing so in a way that produces the fastest

possible gait robustly is difficult, because it requires con-

trolling both the waveform and the leg angular velocities

simultaneously. In contrast, the evolved controller contin-

ues to function robustly even when the maximum angular

velocity is reduced by 60% (Fig. 10b). It achieves this

robustness by slowing down the legs automatically and

keeping them synchronized. Thus, the evolved controller

generalizes well to a range of motor speeds, while the

hand-designed controller generalizes poorly.

4.4 Generalization to different leg positions

Another situation in which the hand-designed controller

performs poorly is when the error between the position of a

leg and the reference waveform becomes too large, which

could happen e.g. when the leg is obstructed by an obstacle.

The larger the error, the longer it takes the PID mechanism

of the hand-designed controller to correct the error. During

this time, the leg may not be synchronized well enough with

the other legs to produce a good gait. The worst such

behavior occurs when the error is maximum, i.e. when the

leg is 180� out-of-phase with the reference waveform.

In order to evaluate robustness against such errors, the

legs were first positioned such that one leg (the left-rear

one) had the maximum error of 180� and the other legs had

zero error. The controller was then initialized with these

leg positions, making it possible to observe how quickly it

corrects the error of the left-rear leg.

The hand-designed controller takes more than 30 sec-

onds to correct this error (Fig. 11a). During this time, the

angular position of the left-rear leg overshoots and under-

shoots the reference waveform several times, synchroniz-

ing with the right-front leg to produce the original trot gait

only gradually. Meanwhile, the other three legs that were

initialized with zero error track their respective reference

waveforms closely from the beginning. This behavior is the

consequence of correcting the error of each leg separately

without modifying the behavior of the other legs.

In contrast, the evolved controller takes only about two

seconds to correct the same error (Fig. 11b). Moreover, it

synchronizes the legs without producing the undesirable

overshooting and undershooting oscillations (ringing) that

the hand-designed controller produces. This robust behav-

ior is possible because the control module for each leg

utilizes inputs from the other legs as well. As a result, the

evolved controller adjusts the behavior of all legs

Fig. 9 Trot gait produced by the hand-designed controller for the real

robot. The plot shows the four leg angles of the robot in the first 12 s.

This controller keeps the legs synchronized with a reference

waveform for a trot gait by applying PID control to correct small

errors in leg positions. However, it is difficult to design such

controllers by hand to work robustly in the general case

(a)

(b)

Fig. 10 Gaits produced by the hand-designed and evolved controllers

on the real robot when the maximum speed of the motors is reduced.

The plots show the four leg angles of the robot in the first 12 s. They

were produced by the same hand-designed controller that produced the

gait in Fig. 9 and the same evolved controller that produced the gait in

Fig. 8. a Reducing the maximum speed of the motors even by 10%

causes the hand-designed controller to lose leg synchronization

quickly because it cannot keep up with the reference waveform.

b The evolved controller maintains leg synchronization and performs

robustly even when the maximum speed of the motors is reduced by

60%. It does so by simply slowing down the gait automatically. Thus

the evolved controller is more general than the hand-designed

controller
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simultaneously, bringing them into the appropriate relative

phases much quicker and smoother than the hand-designed

controller.

Evolution utilizes this ability of one control module to

influence the behavior of the other modules in the next

experiment as well, producing a straight and effective gait

even when one leg is disabled.

4.5 One leg disabled

An important requirement for many robots in the real world

is fault tolerance [10]. For example, hardware failures are

likely in a robot operating in hostile environments or

exploring another planet. In such applications, it is not

always possible to replace a failed leg actuator with a new

one. Walking with the same gait as before is also not an

option because the asymmetric action of the remaining legs

would cause the robot to curve to one side.

In such a situation, a new controller must be designed to

make the robot walk effectively with its remaining legs,

recovering as much performance as possible. Designing

such a controller by hand is challenging; even designing

the appropriate symmetry by hand is challenging. In con-

trast, ENSO should be able to evolve effective neural

network controllers for such an asymmetric robot auto-

matically by disabling the failed leg in simulation. The new

controller can then be downloaded to the physical robot for

a successful walk.

This hypothesis was tested by evolving controllers with

the left-rear leg disabled in the simulation. Figure 12 illus-

trates the symmetry of a resulting champion controller.

Surprisingly, it is still very symmetric with the same type of

module controlling all four legs. Therefore, it produces a gait

similar to a trot (Fig. 13) and sends activation to the disabled

leg also. Since the disabled leg does not respond, evolution

adapted the gait accordingly to produce a straight walk uti-

lizing only three legs. When this controller is transferred to a

similarly disabled physical robot, it produces the same gait

on that robot as well, thus demonstrating successful transfer.

5 Discussion and future work

In the above experiments, ENSO evolved controllers that

produced the same gaits in the physical robot as they did in

simulation. Moreover, these gaits were robust to uncer-

tainties that commonly occur in the real world such as

changes in ground friction between different surfaces, the

maximum angular velocity that the motors can produce,

and the initial positions of legs from which the robot

starts walking. The transfer was successful because of two

factors: (1) it was possible to simulate the physical

(a)

(b)

Fig. 11 Gaits produced by the hand-designed and evolved controllers

on the real robot when the left-rear leg is initialized with maximum

angular position error. The plots show the variation of the four leg

angles of the robot with time. They were produced by the same hand-

designed controller that produced the gait in Fig. 9 and the same

evolved controller that produced the gait in Fig. 8. In order to produce

the original trot gaits, the controllers must correct the initial error by

synchronizing the left-rear leg with the right-front leg. a The hand-

designed controller adjusts only the behavior of the left-rear leg to

correct the error. As a result, the left-rear leg leads and trails the right-

front leg alternately, eventually synchronizing only after more than 30

s. b In contrast, the evolved controller adjusts the behaviors of

multiple legs simultaneously, correcting the error and achieving

synchronization smoothly in about 2 s. Thus the evolved controller

generalizes well, while the hand-designed controller is less robust

Fig. 12 Phenotype graph of a champion neural network controller

evolved with the left-rear leg disabled. The symmetry group of this

graph is surprising in that ENSO did not evolve a different module for

the disabled leg; instead, it evolved the same module for all four legs.

As a result, it produces a gait resembling trot with the disabled leg not

responding (Fig. 13). ENSO adapted this gait to make the robot walk

straight with only three legs
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characteristics of the robot with sufficient accuracy, and (2)

ENSO was able to evolve robust controllers that produce

stable gaits.

It is often difficult to transfer controllers evolved in

simulation to the real world because it is difficult to sim-

ulate the physical robot and its environment accurately [13,

22]. However, this requirement is less critical for the

controllers that ENSO evolves because they are coupled

cell systems [9, 33, 35, 36]. Such systems are robust to

small perturbations and can thus compensate for small

deviations from ideal behavior. For example, instead of

detailed mesh models of the robot morphology, a crude

approximation of its weight distribution was sufficient.

Moreover, it turned out sufficient to model the idiosyn-

cratic properties of the motors and uncertainties in their

behavior using interpolation and noise.

Modeling the controllers as coupled cell systems also

makes it possible to describe the gaits they produce in

terms of their symmetries [9]. Based on this observation,

ENSO discovers effective gaits by evolving the appropriate

symmetry groups for the coupled cell systems. ENSO can

discover many such roughly equivalent solutions when

initialized with different random number seeds. For

example, nine out of ten trials produced unique phenotype

graph representations of controllers for the experiment

discussed in Sect. 4.2. An arbitrary sample of three such

controllers is illustrated in Fig. 14. Although their struc-

tures are different, their symmetries were optimized by

ENSO to produce similar trot gaits, resulting in roughly the

same fitness. Moreover, the controller depicted in the left

graph has identical modules, similar to the controller in

Fig. 7. In contrast, the controllers depicted in the middle

and the right graphs have different modules for the front

and rear legs, making it possible to tune the generated gaits

if necessary by evolving their behaviors independently.

Since different modules can represent different control

functions, such graphs are more likely to evolve in more

complex platforms that require specialized leg behaviors.

Evolving controllers in simulation and then transferring

them to the real robot in this manner is an effective alter-

native to designing controllers by hand. Hand-design is

difficult because it requires anticipating all possible oper-

ating conditions. Moreover, this laborious process has to be

repeated whenever the configuration of the robot changes

and it may even be impossible in some cases. In contrast,

evolution can design a new controller automatically for the

new configuration in simulation. For example, if a leg

actuator fails on a quadruped robot during a remote mis-

sion, then it must continue the mission with minimum

performance degradation by utilizing only the remaining

three legs. ENSO evolved a straight and effective gait for

such a three-legged configuration by disabling a leg in

simulation. The resulting controller produced the same gait

(a)

(b)

Fig. 13 A gait evolved in simulation with the left-rear leg disabled

and transferred to the similarly disabled real robot. The plots show the

four leg angles of the robot in the first 12 s. They were produced by

the controller with the phenotype graph illustrated in Fig. 12. The

disabled leg produces a flat line, while the other three legs maintain

synchronous and phase-related oscillations resembling a trot gait.

However, the synchronous lines for left-front and right-rear legs split

slightly from each other between 0� and 180� and the line for the

right-front leg curves a little around 0�, indicating adaptation of the

gait to produce a straight walk with only three legs. This is a gait that

transfers well to the physical disabled robot

Fig. 14 Variations in phenotype graphs of champion controllers

evolved by ENSO. These controllers were evolved using different

random number seeds for the experiment discussed in Sect. 4.2. They

have different structures either with identical modules (left graph and

Fig. 7) or different modules for the front and rear legs (middle and

right graphs). However, in all cases, the resulting symmetries were

optimized by ENSO to produce effective trot gaits
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when transferred to the physical robot, suggesting that the

approach presented in this paper can be utilized to design

fault-tolerant robots for real-world applications.

The physical quadruped robot used in the experiments

can be extended to a hexapod easily by adding two more

legs to the attachments in the middle. This extension

should be able to demonstrate that the ENSO approach

scales up to a physical robot with more legs. ENSO can

also be tested on robots with more complex legs such as

those with additional joints. Physically realistic simulations

have shown that ENSO can evolve effective gaits, e.g. for a

quadruped robot with knee joints [36]. The resulting well-

coordinated movements that ENSO evolved suggest that it

can be extended to evolve controllers for other multi-seg-

mented robot morphologies as well, such as articulated

arms and for serpentine robots. For these one-dimensional

robots, the search space of symmetries can potentially be

reduced by initializing ENSO with controller structures

that represent their particular morphologies as closely as

possible.

Another interesting extension is to attach Dynamixel

AX-S1 sensors to the physical robot to measure distance

[30]. Readings from these sensors can then be used as

additional controller inputs, making it possible to evolve

high-level behaviors that respond effectively to obstacles in

the environment.

In addition to extending the robot, the ENSO approach

itself can be extended in several ways to evolve controllers

more effectively. First, the current manual decomposition

of the controller into modules can be automated using

hierarchical clustering algorithms based on the robot mor-

phology. Second, instead of using a fixed neural network

architecture for the modules, the architectures can be

evolved using techniques such as NEAT [32]. Third,

crossover of genotype trees can be implemented by swap-

ping subtrees of parent trees if those subtrees have the same

structure and node colors. Future work will focus on such

extensions in order to eventually provide the sophistication

necessary for evolving controllers for real-world robots.

6 Conclusion

This paper demonstrated how the ENSO approach can be

utilized to design effective controllers for a physical quad-

ruped robot. Controllers were evolved for an approximate

model of the robot in a physical simulation using ENSO and

the resulting controllers were then transferred to the physical

robot. ENSO makes such transfer tractable by evolving

symmetric neural network controllers. Since these control-

lers are actually coupled-cell systems, they produce stable

gaits that are robust to inaccuracies in the simulation and

uncertainties in the real world. ENSO evolved effective such

controllers both for a fully functional version of the robot

and for a version with a disabled leg. Moreover, the results

of generalization experiments suggest that these controllers

would be robust to common real-world challenges such as

variations in battery performance and obstacles.
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