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I
n 1994, Karl Sims’ evolved virtual creatures showed the potential

of evolutionary algorithms to produce natural, complex morpholo-

gies and behaviors [30]. One might assume that nearly 20 years

of improvements in computational speed and evolutionary algo-

rithms would produce far more impressive organisms, yet the creatures

evolved in the field of artificial life today are not obviously more com-

plex, natural, or intelligent. Fig. 2 demonstrates an example of similar

complexity in robots evolved 17 years apart.

One hypothesis for why there has not been a clear increase in evolved

complexity is that most studies follow Sims in evolving morphologies with

a limited set of rigid elements [21, 4, 3, 16, 22]. Nature, in contrast,

composes organisms with a vast array of different materials, from soft

tissue to hard bone, and uses these materials to create sub-components

of arbitrary shapes. The ability to construct morphologies with hetero-

geneous materials enables nature to produce more complex, agile, high-

performing bodies [35].
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Fig. 1: An example of a natural looking morphology and behavior evolved by

combining a generative encoding with voxel-resolution soft, actuatable

materials. The soft robot gallops from left to right across the image with

a dog-like gait.

An open question is whether computational evolution will produce more

natural, complex forms if it is able to create organisms out of many ma-

terial types. Here we test that hypothesis by evolving morphologies com-

posed of voxels of different materials. They can be hard or soft, analo-

gous to bone or soft tissue, and inert or expandable, analogous to sup-

portive tissue or muscle. Contiguous patches of homogeneous voxels can

be thought of as different tissue structures.

Another hypothesis is that the encodings used in previous work limited

the design space. Direct encodings lack the regularity and evolvabil-

ity necessary to consistently produce regular morphologies and coordi-

nated behaviors [9, 6, 34, 16], and overly regular indirect encodings con-

strict the design space by disallowing complex regularities with varia-

tion [16, 31, 34]. We test this hypothesis by evolving morphologies with

the CPPN-NEAT encoding [31], which has been shown to create complex

regularities such as symmetry and repetition, both with and without vari-

ation (Fig. 3).
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CPPN-NEAT has shown these abilities in 2D images [29] and 3D objects

[7] and morphologies [4]. To test the impact of the CPPN encoding, we

compare it to a direct encoding. Overall, we find that evolution does

utilize additional materials made available to it; their availability led to

a significant amount of diverse, interesting, complex morphologies and

locomotion behaviors without hindering performance. Furthermore, the

generative encoding produced regular patterns of voxel ‘tissue’, leading

to fast, effective locomotion. In contrast, the direct encoding produced

no phenotypic regularity and led to poor performance.

Because it is notoriously difficult to quantify attributes such as “impres-

siveness” and “complexity”, we make no effort to do so here. Instead,

we attempt to visually represent the interesting diversity of morpholo-

gies and behaviors that evolved once evolution was provided with more

materials and a sophisticated encoding. We also demonstrate the ability

for this system to scale to higher resolutions and greater material diver-

sity without hindering performance.

Finally, we investigate the effects of different fitness functions, reveal-

ing that evolution with this encoding and material palette can create dif-

ferent bodies and behaviors in response to different environmental and

selective pressures.

1 Background

There are many Evolutionary Robotics papers with rigid-body robots [25].

However, few attempts have been made to evolve robots composed of

soft materials [27], and most of those attempts are limited to only a few

components. This paucity is due largely to the computational costs of

simulating flexible materials and because many genetic encodings do

not scale to large parameter spaces [5, 18].

The CPPN encoding abstracts how developmental biology builds natural

complexity, and has been shown to produce complex, natural-appearing

images and objects (Fig. 3) [29, 7, 31]. Auerbach and Bongard used this

generative encoding to evolve robotic structures at finer resolutions than

previous work. The systems evolved demonstrated the ability to take

advantage of geometric coordinates to inform the evolution of complex

bodies. However, this work was limited to rigid building blocks which

were actuated by a large number of hinge joints [1, 4, 3], or had no actu-

ation at all [2].

Fig. 2: (left) The scale and resolution of robots evolved by Sims in 1994; (middle)

The scale and resolution at which evolutionary robotics commonly occurs

today (from Lehman and Stanley in 2011); (right) The scale and resolu-

tion of robot fabrication techniques (from Lipson and Pollack, 2000).

Fig. 3: (left) Examples of high resolution, complex, natural-looking images

evolved with CPPN-NEAT that contain symmetry, repetition, and interest-

ing variation; (right) Examples of CPPN-encoded 3D shapes with these

same properties from (J. Clune and H. Lipson 2011).

Rigid structures limit the ability of robots to interact with their environ-

ments, especially when compared to the complex movements of struc-

tures in biology composed of muscle and connective tissue. These

structures, called muscular hydrostats, often display incredible flexibility

and strength; examples from biology include octopus arms or elephant

trunks [35]. While soft robots can be designed that provide outstanding

mobility, strength and reliability, the design process is complicated by

multiple competing and difficult-to-define objectives [35]. Evolutionary

algorithms excel at such problems, but have historically not been able

to scale to larger robotic designs. To demonstrate that evolution can de-

sign complex, soft-bodied robots, Hiller and Lipson created a soft-voxel

simulator (called VoxCAD) [11].

SIGEVOlution Volume 7, Issue 1 12



EDITORIAL

They showed a preliminary result that CPPNs can produce interesting lo-

comotion morphologies, and that such designs can transfer to the real

world (Fig. 4) [13]. However, this work did not take advantage of the

NEAT algorithm, with its historical markings, speciation, crossover, and

complexification over time - which have been shown to greatly improve

the search process [33]. Additionally, these preliminary results consisted

of only three trials per treatment. Here we conduct a more in-depth ex-

ploration of the capabilities of CPPNs when evolving soft robots in VoxCad.

2 METHODS

2.1 CPPN-NEAT

CPPN-NEAT has been repeatedly described in detail [31, 9, 7, 10], so we

only briefly summarize it here. A compositional pattern-producing net-

work (CPPN) is similar to a neural network, but its nodes contain multiple

math functions (in this paper: sine, sigmoid, Gaussian, and linear). CPPNs

evolve according to the NEAT algorithm [31]. The CPPN produces geomet-

ric output patterns that are built up from the functions of these nodes.

Because the nodes have regular mathematical functions, the output pat-

terns tend to be regular (e.g. a Gaussian function can create symmetry

and a sine function can create repetition).

Fig. 4: A time-series example of a fabricated soft robot, which actuates with

cyclic 20% volumetric actuation in a pressure chamber (J. D. Hiller and

H. Lipson 2012). This proof-of-concept shows that evolved, soft-bodied

robots can be physically realized. Current work is investigating soft robot

actuation outside of a pressure chamber.

Fig. 5: A CPPN is iteratively queried for each voxel within a bounding area and

produces output values as a function of the coordinates of that voxel.

These outputs determine the presence of voxels and their material prop-

erties to specify a soft robot.

In this paper, each voxel has an x, y, and z coordinate that is input into

the network, along with the voxel’s distance from center (d). One out-

put of the network specifies whether any material is present, while the

maximum value of the 4 remaining output nodes (each representing an

individual material) specifies the type of material present at that loca-

tion (Fig. 5). This method of separating the presence of a phenotypic

component and its parameters into separate CPPN outputs has been

shown to improve performance [36]. Robots can be produced at any

desired resolution. If there are multiple disconnected patches, only the

most central patch is considered when producing the robot morphology.

2.2 VoxCAD

Fitness evaluations are performed in the VoxCAD soft-body simulator,

which is described in detail in Hiller and Lipson 2012 [14]. The simu-

lator efficiently models the statics, dynamics, and non-linear deforma-

tion of heterogeneous soft bodies. It also provides support for volumetric

actuation of individual voxels (analogous to expanding and contracting

muscles) or passive materials of varying stiffness (much like soft support

tissue or rigid bone). For visualization, we display each voxel, although a

smooth surface mesh could be added via the Marching Cubes algorithm

[23, 7].
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Fig. 6: CPPN-NEAT-encoded soft robots can scale to any resolution. Pictured here are soft robots sampled at voxel resolutions of 5×5×5 (left), 10×10×10 (center),

and 20×20×20 (right).

2.2.1 Materials

Following [12], there are two types of voxels: those that expand and

contract at a pre-specified frequency, and passive voxels with no intrinsic

actuation, which are either soft or hard. We expand upon [12] to include

multiple phases of actuation. Unless otherwise noted, four materials are

used: Green voxels undergo periodic volumetric actuations of 20%. Light

blue voxels are soft and passive, having no intrinsic actuation, with their

deformation caused solely by nearby voxels. Red voxels behave similarly

to green ones, but with counter-phase actuations. Dark blue voxels are

also passive, but are more stiff and resistant to deformation than light

blue voxels. In treatments with less than 4 materials, voxels are added in

the order above (e.g. two material treatments consist of green and light

blue voxels).

2.3 GAlib

The direct encoding is from GAlib—fully described in [37]—a popular

off-the-shelf genetic algorithm library from MIT. In the direct encoding

genome, each voxel has its own independent values representing its

presence and material outputs. The first value is binary, indicating

whether a voxel at that position exists. If the voxel exists, the highest

of the material property values determines the type of voxel. Thus, a

10×10×10 (“103”) voxel soft robot with 4 possible materials would have

a genome size of 103×5 = 5000 values.

2.4 Experimental Details

Treatments consist of 35 runs, each with a population size of 30, evolved

for 1000 generations. Unless otherwise noted, fitness is the difference in

the center of mass of the soft robot between initialization and the end of

10 actuation cycles. If any fitness penalties are assessed, they consist

of multiplying the above fitness metric by: 1− penalty metric
maximum penalty metric . For

example, if the penalty metric is the number of voxels, an organism with

400 non-empty voxels out of a possible 1000 would have its displacement

multiplied by 1− 400
1000 = 0.6 to produce its final fitness value. Other CPPN-

NEAT parameters are the same as in Clune and Lipson 2011 [7].

3 Results

Quantitative and qualitative analyses reveal that evolution in this system

is able to produce effective and interesting locomoting soft robots at dif-

ferent voxel resolutions and using different materials. We also discover

that imposing different environmental challenges in the form of penalty

functions provides an increased diversity of forms, suggesting the capa-

bility to adapt to various selective pressures.

Videos of soft robot locomotion are available at http://tinyurl.com/

EvolvingSoftRobots. So the reader may verify our subjective, qual-

itative assessments, we have permanently archived all evolved organ-

isms, data, source code, and parameter settings at the Dryad Digital

Repository.
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3.1 Direct vs. Generative Encoding

The CPPN-NEAT generative encoding far outperforms the direct encoding

(Figure 8), which is consistent with previous findings [9, 6]. The most

stark difference is in the regularity of the voxel distributions (compare

Figs. 1, 6, 12, 13 to Fig. 7). CPPN-NEAT soft robots consist of homoge-

neous patches of materials akin to tissues (e.g. one large patch of mus-

cle, another patch of bone, etc.). The direct encoding, on the other hand,

seems to randomly assign a material to each voxel. These homogeneous

tissue structures are beneficial because similar types of voxels can work

in a coordinated fashion to achieve the locomotion objective. For exam-

ple, all the voxels in one large section of green voxels will expand at the

same time, functioning as muscle tissue. This global coordination leads

to jumping, bounding, stepping, and many other behaviors. In the di-

rect encoding, each voxel works independently from–and often at odds

with–its neighboring voxels, preventing coordinated behaviors. Instead,

final organisms appear visually similar to those at initialization, and per-

formance barely improves across generations (Figure 8).

Another reason for the success of the CPPN-NEAT encoding is one of the

key properties of the NEAT algorithm: it starts with CPPN networks that

produce simple geometric voxel patterns and complexifies those patterns

over time [31].

3.2 Penalty Functions

To explore performance under different selective or environmental pres-

sures, we tested four different penalty regimes. All four require the soft

robot to move as far as possible, but have different restrictions. In one

environment, the soft robots are penalized for their number of voxels,

similar to an animal having to work harder to carry more weight. In an-

other, the soft robots are penalized for their amount of actuatable mate-

rial, analogous to the cost of expending energy to contract muscles. In

a third treatment, a penalty is assessed for the number of connections

(adjoining faces between voxels), akin to animals that live in warm en-

vironments and overheat if their surface area is small in comparison to

their volume. Finally, there is also the baseline treatment in which no

penalties are assessed.

While a cost for actuated voxels does perform significantly worse than

a setup with no cost (p = 1.9× 10−5 comparing final fitness values), all

treatments tend to perform similarly over evolutionary time (Fig. 9). This

rough equivalence suggests that the system has the ability to adapt

to different cost requirements without major reductions in performance.

However, drastically different types of body-plans and behaviors evolved

for the different fitness functions. There are differences in the propor-

tions of each material found in evolved organisms, indicating that evo-

lution utilizes different material distributions to fine tune morphologies

to various environments (Fig. 10). For example, when no penalty cost is

assessed, more voxels are present (p < 2× 10−13). When there is a cost

for the number of actuated voxels, but not for support tissue, evolution

uses more of these inert support materials (p < 0.02).

More revealing are the differences in behaviors. Fig. 11 categorizes loco-

motion strategies into several broad classes, and shows that different

task requirements favor different classes of these behaviors. To limit

subjectivity in the categorization process, we made clear category def-

initions, as is common in observational biology, and provide an online

archive of all organisms for reader evaluation (see Sec. 3).

Fig. 7: A representative example of a soft robot evolved with a direct encoding.

Note the lack of regularity and organization: there are few contiguous,

homogeneous patches of one type of voxel. Instead, the organism ap-

pears to be composed of randomly distributed voxels . The resolution is

the default 103.
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Fig. 8: The best individuals from 35 independent runs with a direct or generative

encoding. Note how the generative encoding sees large improvements

early in evolution, while it is exploring new locomotion types. It then set-

tles on specific types and gradually improves coordination, timing, etc.,

to exploit a given strategy. The direct encoding is unable to produce glob-

ally coordinated behavior to develop new locomotion strategies, resulting

in very minor improvements as it exploits its initial random forms. Here,

and in all figures, thick lines are medians ±95% bootstrapped confidence

intervals.

Fig. 12 displays the common locomotion strategies and Fig. 11 shows

how frequently they evolved. They are described in order of appearance

in Fig. 12. The L-Walker is named after the “L" shape its rectangular body

forms, and is distinguished by its blocky form and hinge-like pivot point

in the bend of the L. The Incher is named after its inchworm like behav-

ior, in which it pulls its back leg up to its front legs by arching its back,

then stretches out to flatten itself and reach its front legs forward. Its

morphology is distinguished by its sharp spine and diagonal separation

between actuatable materials. The Push-Pull is a fairly wide class of be-

haviors and is tied together by the soft robot’s powerful push with its (of-

ten large) hind leg to propel itself forward, which is usually coupled with

a twisting or tipping of its front limb/head to pull itself forward between

pushes. The head shape and thinner neck region are surprisingly com-
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Fig. 9: Performance is mostly unaffected by different selection pressures (i.e.

fitness functions).

mon features. Next, the Jitter (or Bouncer) moves by bouncing its (often

large) back section up and down, which pushes the creature forward. It

is distinguished by its long body and is often composed mainly of a single

actuatable material. The Jumper is similar in that it is often comprised of

a single actuatable material, but locomotes in an upright position, spring-

ing up into the air and using its weight to angle its jumping and falling in

a controlled fashion to move forward. The Wings is distinguished by its

unique vertical axis of rotation. It brings its arms (or wings) in front of it,

then pushes them down and out to the sides, propelling its body forward

with each flapping-like motion. Fig. 13 demonstrates other, less-common

behaviors that evolved.

These example locomotion strategies display the system’s ability to pro-

duce a diverse set of morphologies and behaviors, which likely stems

from its access to multiple types of materials. Our results suggest that

with even more materials, computational evolution could produce even

more sophisticated morphologies and behaviors. Note that different be-

haviors show up more frequently for different task settings (Fig. 11), sug-

gesting the ability of the system to fine tune to adapt to different selec-

tive pressures.
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Fig. 10: The amount of each material that evolved for different cost functions,

revealing the system’s ability to adapt material distributions to different

environments. For example, without a cost, evolution used more voxels

to produce actuation (p < 2× 10−13). With a cost for actuated voxels,

evolution tends to use more inert support tissue (p < 0.02).

3.3 Material Types

To meet its full potential, this system must scale to arbitrarily large num-

bers of materials and resolutions. We first explore its ability to compose

soft robots out of a range of materials by separately evolving soft robots

with increasing numbers of materials (in the order outlined in Sec. 2.2.1).

Adding a second, and then a third, material significantly improved perfor-

mance (Fig. 14, p < 2× 10−6), and adding a further hard, inert material

did not significantly hurt performance (Fig. 14, p = 0.68). This improved

performance suggests that CPPN-NEAT is capable of taking advantage of

the increase in morphological and behavioral options. This result is in-

teresting, as one might have expected a drop in performance associated

with the need to search in a higher dimensional space and coordinate

more materials.

L-Walker Incher Push-Pull Jitter Jumper Wings Other0

5

10

15

20

25

In
di

vi
du

al
s 

of
 L

oc
om

ot
io

n 
Ty

pe

No Cost
Cost for Actuated Voxels
Cost for Voxel Connections
Cost for Total Voxels

Fig. 11: Common behaviors evolved under different cost functions, summed

across all runs. These behaviors are described in Sec. 3.2 and visu-

alized in Fig. 12. Some behaviors occur more frequently under certain

selective regimes. For example, the L-Walker is more common without

a voxel cost, while Jitter, Jumper, and Wings do not evolve in any of the

no cost runs.

3.4 Resolution

This system also is capable of scaling to higher resolution renderings of

soft robots, involving increasing numbers of voxels. Fig. 6 shows exam-

ple morphologies evolved at each resolution. The generative encoding

tended to perform roughly the same regardless of resolution, although

the computational expense of simulating large numbers of voxels pre-

vented a rigorous investigation of the effect of resolution on performance.

Faster computers will enable such research and the evolution of higher-

resolution soft robots.
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Fig. 12: Time series of common soft robot behaviors as they move from left to

right across the image. From top to bottom, we refer to them as L-

Walker, Incher, Push-Pull, Jitter, Jumper, and Wings. Fig. 11 reports how

frequently they evolved.

Fig. 13: Time series of other evolved strategies. (top) Opposite leg stepping cre-

ates a traditional animal walk or trot. (middle) A trunk-like appendage

on the front of the robot helps to pull it forward. (bottom) A trot, quite

reminiscent of a galloping horse, demonstrates the inclusion of stiff ma-

terial to create bone-like support in longer appendages.
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Fig. 14: The number of materials also affects performance. With only one, only

simple behaviors like Jumping or Bouncing are possible, so performance

peaks early and fails to discover new gaits over time. Upon adding

a second material, more complex jumping and L-Walker behavior de-

velops. When a second actuatable material is added, most behavior

strategies from Fig. 12 become possible. Adding a stiff support material

broadens the range of possible gaits, but is only rarely taken advantage

of (such as in the bottom gallop of Fig. 13) and thus has a minimal im-

pact on overall performance. These observational assessments may be

verified, as all evolved organisms are available online (Sec. 3)

Fig. 15: An example of a soft robot that has evolved “teeth" to hook onto the

obstacle rings in its environment and propel itself across them.
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4 Discussion

The results show that life-like, complex, interesting morphologies and

behaviors are possible when we expand the design space of evolution-

ary robotics to include soft materials that behave similarly to organic

tissue or muscle, and search that design space with a powerful genera-

tive encoding like CPPN-NEAT. Our preliminary experiments suggest that

soft robotics at the voxel resolution will someday provide complex and

breathtaking demonstrations of lifelike artificial forms. Soft robotics will

also showcase the ability of evolutionary design because human intu-

itions and engineering fare poorly in such entangled, non-linear design

spaces.

We challenged multiple scientists to design fast, locomoting soft robots

by hand, using the same resolution and materials. While the sample

size is not sufficient to report hard data, all participants (both those with

and without engineering backgrounds) were unable to produce organ-

isms that scored higher than the evolved creatures. Participants noted

the surprising difficulty of producing efficient walkers with these four ma-

terials. This preliminary experiment supports the claim that systems like

the CPPN-NEAT generative encoding will increasingly highlight the effec-

tiveness of automated design relative to a human designer.

This work shows that the presence of soft materials alone is not sufficient

to provide interesting and efficient locomotion, as soft robots created

from the direct encoding performed poorly. Our results are consistent

with work evolving rigid-body robots that shows that generative encod-

ings outperform direct encodings for evolutionary robotics [17, 19, 9, 6].

Unfortunately, there have been few attempts to evolve robot morpholo-

gies with CPPN-NEAT [2], and there is no consensus in the field of a

proper measurement of “complexity", “interestingness", or “natural" ap-

pearance, so we cannot directly compare our soft robots to their rigid-

body counterparts. However, we hope that the reader will agree about

the potential of evolved soft robots upon viewing the creatures in action

[http://tinyurl.com/EvolvingSoftRobots].

5 Future Work

The ability to evolve complex and intricate forms lends itself naturally to

other questions in the field. Auerbach and Bongard have explored the

relationship between environment and morphology with rigid robots in

highly regular environments [4]. Because our system allows more flex-

ibility in robot morphology and behavior, it may shed additional, or dif-

ferent, light on the relationship between morphology, behavior, and the

environment. Preliminary results demonstrate the ability of this system

to produce morphologies well suited for obstacles in their environments

(Fig. 15).

While our research produced an impressive array of diverse forms, it

did use a target-based fitness objective, which can hinder search [38].

Switching to modern techniques for explicitly generating diversity, such

as the MOLE algorithm by Mouret and Clune [24, 8] or algorithms by

Lehman and Stanley [21], has the potential to create an incredibly com-

plex and diverse set of morphologies and behaviors.

Additionally, we are currently pursuing methods to minimize the need for

expensive simulations and to evolve specific material properties instead

of having a predefined palette of materials. These avenues are expected

to allow increased complexity and diversity in future studies.

The HyperNEAT algorithm [32], which utilizes CPPNs, has been shown to

be effective for evolving artificial neural network controllers for robots

[9, 20, 6]. The same encoding from this work could thus co-evolve robot

controllers and soft robot morphologies. Bongard and Pfeifer have argued

that such body-brain co-evolution is critical toward progress in evolution-

ary robotics and artificial intelligence [26].

Soft robots have shown promise in multiple areas of robotics, such as

gripping [15] or human-robot interaction [28]. The scale-invariant encod-

ing and soft actuation from this work has potential in these other areas

of soft robotics as well.

In order to compare different approaches, the field would benefit from

general, accepted definitions and quantitative measures of complexity,

impressiveness, and naturalness. Such metrics will enable more quanti-

tative analyses in future studies like this one.
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6 Conclusion

In this work we investigate the difficult-to-address question of why we as

a field have failed to substantially improve upon the work of Karl Sims

nearly two decades ago. We show that combining a powerful genera-

tive encoding based on principles of developmental biology with soft,

biologically-inspired materials produces a diverse array of interesting

morphologies and behaviors. The evolved organisms are qualitatively dif-

ferent from those evolved in previous research with more traditional rigid

materials and either direct, or overly regular, encodings. The CPPN-NEAT

encoding produces complex, life-like organisms with properties seen in

natural organisms, such as symmetry and repetition, with and without

variation. Further, it adapts to increased resolutions, numbers of avail-

able materials, and different environmental pressures by tailoring de-

signs to different selective pressures without substantial performance

degradation. Our results suggest that investigating soft robotics and

modern generative encodings may offer a path towards eventually pro-

ducing the next generation of impressive, computationally evolved crea-

tures to fill artificial worlds and showcase the power of evolutionary algo-

rithms.
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