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ABSTRACT
In fused filament fabrication (FFF), the orientation of a part within
the printer volume can dramatically affect print quality and prob-
ability of success. An object’s orientation determines how much
support structure will be required and the strength of adhesion
between the deposited material and the build surface. Selecting a
part’s orientation is a non-trivial problem that users of FFF slic-
ing software face routinely. Numerous part orientations need to be
considered to find the best according to the results of the slicing pro-
cess. This paper presents a method to automatically determine an
optimal printing orientation for FFF that maximizes build-surface
adhesion while minimizing the need for support structure. The
algorithm considers the slicing angle and a configurable angle for
overhang that requires supporting structure. By employing GPU
acceleration and convex hull analysis to limit candidate orienta-
tions, the algorithm can run in real time as a preprocessing aid to
users slicing parts.
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1 INTRODUCTION
Fused filament fabrication (FFF) is a type of layer-based additive
manufacturing that uses extrusion to deposit material. The com-
mon workflow with FFF involves the design of a 3D model in CAD
software, G-code generation, and construction by a machine. Var-
ious factors at each of these phases can affect the quality of the
constructed part. When designing a part, the designer must be
keenly aware of the constraints and limitations of the FFF machine
that will construct their object. Although some factors such as
density and layer-height can be configured in the slicing phase,
most parameters are dictated by the machine capabilities. Addi-
tionally, most CAD and slicing software do not provide feedback
on the relative printability of a part for a specific machine. The
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lack of communication between workflow phases of FFF results in
uninformed designs that are not efficiently printed. Furthermore,
many of the design constraints placed by FFF machines could be
optimized using computational methods.

A primary example of FFF design constraints that could be op-
timized through computational methods is the selection of build
orientation. When preparing a part, the designer needs to give spe-
cial care to the stacking orientation of the printed layers. The layer
direction influences mechanical characteristics, build time, surface
finish, and material usage. The build orientation must be carefully
selected to balance these factors, while also ensuring a high proba-
bility of a successful print. In the traditional FFF workflow, a user
must either design a part with a specific build orientation in mind
or determine the optimal one during the slicing process. Designing
parts with a specific build orientation is a technical process that re-
quires advanced knowledge of the machine and fabrication practice
being used. Similarly, determining the optimal orientation of an
arbitrary model at slice-time requires an experienced practitioner.
A sub-optimal build orientation may result in poor adhesion to the
build surface and wasted support material. Additionally, the near
infinite number of build orientations adds complexity to the selec-
tion process. To address this problem, we present a computational
tool to select build orientations in FFF.

In this paper, we propose a GPU-accelerated method for deter-
mining the optimal build orientation using convex hull analysis.
Our algorithm focuses on build adhesion and accurate support
calculation and introduces a heuristic to optimize multiple build pa-
rameters. We begin with a discussion of our selection criteria. Next,
we outline our convex hull analysis and how it reduces the solution
space. Then, we outline the specific GPU-based implementation
and our heuristic for choosing the best orientation. Examples are
presented in the case studies section to demonstrate the capabilities
of the algorithm. Finally, we discuss these result and implications
of the proposed method.

2 RELATEDWORK
Numerous methods have been proposed to solve the optimal build
orientation problem [Alexander et al. 1998; Canellidis et al. 2009;
Pandey et al. 2004; Strano et al. 2013; Taufik and Jain 2013]. Al-
though specific implementations vary, virtually all existing works
follow a similar format: target a process type, determine what build
characteristics matter for that process, and employ an optimization
strategy. Early attempts by Frank et al. to solve the build orien-
tation problem revolve around expert tools used to select a build
orientation [Frank and Fadel 1995]. Thompson et al. improves on
these expert-methods by using quantitative measurements of 3D
model orientations [Thompson and Crawford 1995]. However, this
method still requires relative weighting by a user to pick build
factors when optimizing.

Perhaps the most popular factor to optimize for when deter-
mining optimal build orientation is support structures. Shen et al.
propose a novel method to optimally orient parts on a dynamic build
platform [Shen et al. 2020]. Their method minimizes support struc-
tures using multi-objective particle swarm optimization. When
optimizing for traditional static build plates, there is significant
variation in how existing solutions calculate the required supports.

Simple methods compute the surface area of overhanging facets to
estimate the required supports [Schranz 2016]. Morgan et al. use
a more accurate approach that computes the 3D support volume
by constructing prisms between the build surface and overhanging
facets [Morgan et al. 2016]. Ezar et al. compute 3D support volume
quickly by leveraging the rasterization capabilities of a GPU [Ezair
et al. 2015]. Similarly, Paul and Anand use a voxel-based approach to
compute support volume quickly and accurately [Paul and Anand
2015]. The quality of the selected orientation is correlated to the
accuracy of the support volume calculation. However, the higher
accuracy calculations are more computationally complex and time
consuming. The trade off between accuracy and run time must be
considered when developing an optimization method for selecting
build orientation.

Another common optimization criterion is the aliasing that oc-
curs when discretizing objects into layers. The stair-stepping ef-
fect caused by slicing into layers can degrade surface finish and
tolerances. Jibin proposes an algorithm to optimize build orienta-
tion that attempts to minimize aliasing, support volume, and build
time [Jibin 2005]. Thrimurthulu et al. outline a method to mini-
mize surface roughness of layered parts based on build orientation
[Thrimurthulu et al. 2004]. Their work also focuses on the implica-
tions of build orientation on the surface finish of parts constructed
with adaptive layer-height slicing.

Mechanical strength is also of concern when picking an object
orientation. Depending on compression and shear forces the ob-
ject will experience in use, certain orientations may exhibit better
strength characteristics. Quintana et al. analyze the effect of build
orientation on the strength of SLA printed parts and found that
part orientation was correlated with the direction of layer-to-layer
interfaces [Quintana et al. 2010]. This suggests that parts are best
orientated to compress their layers, while minimizing shear and
tension. Although mechanical strength can be critical for certain
applications, it also requires expert knowledge on how the part
will be loaded. We choose not to focus on mechanical build orienta-
tion optimization due to the complexity involved with computing
external interfaces and unknown material properties.

Most solutions in literature analyze multiple factors to select
an optimal build orientation, resulting in numerous optimization
schemes. Early attempts such as Gupta et al. choose an optimal
orientation by minimizing a weighted cost function [Gupta et al.
1999]. Some modern solutions instead rotate in small increments
about X and Y to exhaust the candidate orientation space. Phatak
and Pande encode X and Y rotation as chromosomes for a genetic
algorithm that optimizes build orientation according to a fitness
function [Phatak and Pande 2012]. Canellidis et al. employ an identi-
cal chromosomal encoding to Phatak, however, choose to focus on a
wider variety of build parameters [Canellidis et al. 2009]. Choosing
candidate orientations by rotating in small values about X and Y
results in an infinite solution space that can be expensive to search.
Although these genetic algorithms can provide reasonable solutions
using this encoding, their computational complexity is too high
to provide real time feedback for users. While genetic algorithms
often result in reasonable solutions, they provide no guarantees
on optimally, especially with the infinite search space of X and Y
rotation.
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Perhaps the most similar work to ours is that of Zwier and Wits
[Zwier and Wits 2016]. Their solution employs the convex-hull
principal to reduce the number of candidate orientations by plac-
ing coincidental hull and mesh faces on the build surface. They
also focus on minimizing support structures by selecting the ori-
entation with the smallest ratio of overhang area to build surface
area. Zwier’s and Wits’ approach provides a solution much faster
than genetic algorithms but still requires several minutes to ar-
rive at an optimal orientation. In contrast, our proposed method
considers all faces on the convex hull, not just the faces that are
coincident with the mesh, as potential orientations. Additionally,
we implement a more accurate 3D volume calculation for mini-
mizing support structure, compared to Zwier and Wits’s 2D area
estimation. Additionally, the proposed algorithm aims to maximize
surface adhesion by placing greater emphasis on the cross-sectional
build surface area of the first layer. Finally, our proposed work is
GPU-accelerated so it can find the optimal orientation quicker than
many of the aforementioned methods and can be employed in real
time during the design and slicing processes.

3 METHODS
3.1 Selection Criteria
Our proposed algorithm is interested in the role of build orientation
in the FFF process. In particular, the method was developed to orient
large objects with complex geometry on the Big Area Additive
Manufacturing (BAAM) system [Love and Duty 2015]. The large
volume of this system places special emphasis on two objectives:
minimization of support volume and maximization of build-surface
adhesion [Roschli et al. 2019]. On smaller desktop FFF machines,
supports are often used to print objects with significant overhang.
These structures can be printed out of the same build material, or a
separate water-soluble material; however, supports must always
be removed after printing. Although support structures enable
greater design flexibility, support structures should be avoidedwhen
possible to reduce wasted material usage. Similarly, certain soft
desktop materials such as TPU do not perform well with traditional
support structure calculations. On BAAM, support structures are
infeasible. The large printed objects would require heavymachinery
to remove supports and result in a poor surface finish. Likewise,
soluble supports would require an enormous water-bath to fully
submerge BAAM parts. Consequently, our optimization criteria
includes the minimization of support volume.

We found no previous work that optimizes for build surface ad-
hesion, but is is an important determinant of success in a 3D print
[Devicharan and Garg 2019]. There are several considerations that
can lead to better build surface adhesion. First, the build surface
should be maintained evenly at the glass-transition temperature
of the material being printed[Rahman et al. 2016; Södergård and
Stolt 2002; Wang and Gardner 2018]. This ensures the first layer of
the print remains pliable under the shifting thermal and mechan-
ical stresses applied during the printing process. When printing
is completed, that part should be cooled evenly to reduce warp-
ing. The second consideration for surface adhesion is the material
compatibility of the build substrate and build material(s). Various
commercial products exist to improve the chemical bonding of the
part to the build surface [BuildTak [n. d.]; Gloop! [n. d.]]. Although

these solutions can improve the likelihood a part remains bonded
with the build surface, they add additional consumable cost to the
printing workflow.

A simpler and cheaper alternative to additives is optimizing the
part’s geometry to maximize the area in contact with the build
surface. Depending on the geometry of the part this could be as
simple as orienting the object in such a way to place large faces
against the build surface. Many slicing softwares also allow for rafts
and brims to be added below or around the first layer geometry
to give the part a wider food-print [Simplify3D 2019]. Similar to
supports, these slicer-based additions result in wasted material
that must be removed after printing and as such are not feasible
on the BAAM system. An increased first-layer area reduces part
warping, improves the probability of success, and can be optimized
for without an additional cost.

Other factors such as the build orientation’s role in anisotropic
strength and aliasing were considered. However, we choose not
to evaluate anistropic strength because of the variance in loading
criteria necessary to develop a general-purpose tool for all geome-
tries. Similarly, we choose to disregard aliasing as an optimization
criterion because of the subjective nature of evaluating surface
finish quality and the focus on BAAM.

3.2 Determining Candidate Orientations /
Limiting Problem Space

Given an input triangulated mesh, selecting candidate orientations
is a non-trivial problem with a seemingly infinite solution space.
If the area of the first layer is considered as an objective to max-
imize, one approach would be to identify candidate orientations
by grouping adjacent triangular facets with the same unit normal
vector. When the object is oriented such that a grouping of facets
is placed against the build surface, i.e. the unit vector is orthogonal
to the build surface, a candidate orientation is created. The area of
faces in each group is then summed and then maximized. Although
this method would reduce the number of candidate orientations to
no more than the number of facets in a mesh, it does not account
for orientations that would result in an intersection with the build
surface. This can be illustrated in two-dimensions where a table is
oriented to a face on a leg in figure 1 (a), resulting in a collision with
the build surface. In figure 1 (b), the same table can also be oriented
so that the tabletop is on the build surface to avoid a collision. This
example illustrates that only a subset of external facets are valid
orientations.

To identify the subset of external facets that are valid orientations
and do not result in collision with the build plate, the convex hull
can be used. Intuitively, the convex hull is a closed minimal bound-
ing volume of a mesh. We use the Quickhull algorithm proposed
by Barber et Al. and provided by the Computational Geometry
Algorithms Library [Barber et al. 1996; Hert and Schirra 2023] to
compute the convex hull. Figure 2 shows the convex hull for multi-
ple 3D meshes. We refer to the set of faces that are both the convex
hull and the mesh as set A. Set A represents the faces on the input
mesh that are printable orientations. The subset of external facets,
A, on mesh X can be expressed as:

𝐴 = 𝐹𝑋 ∩ 𝐹𝛽 (1)
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Figure 1: A 2D table model shown in gray oriented two ways
on a build surface. Red section in (a) highlights collision with
the build surface.

Figure 2: 3D models shown in blue, and their corresponding
convex hulls shown in pink

where 𝐹𝑋 is the set of facets in mesh 𝑋 and 𝐹𝛽 is the set of facets
in the convex hull of 𝑋 .
Facets that are in the set 𝐵 = 𝐹𝛽 − 𝐹𝑋 are facets of the convex hull
but not facets of the mesh 𝑋 , so it may appear that these are not
valid orientations. This incorrect assumption is corroborated when
the surface adhesion is calculated as the sum of the area of the
mesh’s facets in contact with the build surface. In Figure 3(b), the
table is oriented to place a facet in set B from the convex hull on
the build plate. This facet results in only two points from the mesh
in contact with the bed, resulting in zero build surface area using
the facets area calculation. Figure 4 highlights the inadequacy of
this calculation by depicting the height of the first layer slice and
the true build surface area. When the surface area is calculated
as the sum of polygons resulting from first-layer cross-sectioning,
it can be observed that orientations from set 𝐵 result in positive,
non-zero areas and are therefore valid. While the cross-sectional
area computation is more complex, the different results can be
significant as illustrated in Figure 5. If only facets on the mesh
are considered, then the object would be oriented on its long edge.
Because the orange cross-sectional plane intersects an area that
is larger than any one of the triangular faces shared by the mesh
and the convex hull, the optimal orientation of this shape is upside
down.

Leveraging the convex hull to determine candidate orientations
bounds the solution space to be no larger than the set of all facets
in a mesh. The number of potential orientations can be further
reduced by combining facets in 𝐹𝛽 that have parallel unit normal
vectors, as they would result in the same part orientation. Even
with large meshes that are comprised entirely of external facets, the
number of possible candidate orientations is small when compared
with methods that rotate in small increments about 𝑋 and 𝑌 axes.

Figure 3: 2D table example in various orientation show with
the convex hull in pink. (a) and (b) show orientations on the
convex hull. (c) shows an orientation on an internal facet

Figure 4: 2D table with a cross-sectioning place shown as the
red dotted line

Figure 5: A curved object highlighting the benefit of using
cross-sectional area

3.3 Parallelism and GPU-Acceleration
Although convex hull analysis limits the number of possible candi-
date orientations, determining corresponding first-layer area and
required support volume are expensive operations. With the goal
of making the proposed method available as a pre-slicing aid to
users, multi-threading and GPU-acceleration were used to calculate
support volume and surface area in parallel.
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The overall approach is given in algorithm 1. First, the convex
hull is computed on the CPU. An initial set of candidate orientations
is created by identifying unique faces on the hull. Then, each orien-
tation is assigned a CPU thread for support and area calculation.
This phase is completed in parallel since orientations do not affect
one another. After all CPU threads have completed, the GPU is used
quickly to sort the orientations in ascending first-layer area. With
this list, a heuristic selects the optimal orientation for the user.

Algorithm 1 Process overview of the proposed algorithm
Require: A closed manifold triangle mesh
1: hull_faces ← Compute convex hull and return triangular

faces
2: candidate_orientations← merge all hull_faces that are

coplanar
3: Copy mesh to GPU
4: for all candidate_orientations do {in parallel on GPU }
5: candidate_area← area(candidate_orientation)
6: candidate_support_vol ←

supportVolume(candidate_orientation)
7: end for
8: gpuSynchronize()
9: Sort candidate_orientations by first layer area on GPU using

a reduction
10: optimal← Heuristic(candidate_orientations)
11: return optimal

3.3.1 GPU-Accelerated First Layer Area Calculation. Algorithm 2
describes the first layer area calculation subprocess. This method
was implemented using the general-purpose compute abilities pro-
vided by NVIDIA CUDA. It starts by creating a plane from a can-
didate orientation using any point on the triangle and its normal
vector. This plane is then translated along the inverse normal vector
by a layer height. The layer height is an input configured by the
user to match the printing process. Each triangle in the mesh is then
assigned to a free GPU thread to compute the intersection between
it and the translated plane. If the plane and triangle intersect, the
resulting points are saved to global memory. After all GPU triangles
have been computed, the intersections are copied from the GPU
memory to the host CPU memory. The segments are stitched into a
polygon and their areas computed. Finally, the areas of all polygons
are summing to determine the total fist layer foot-print. This result
is saved to the candidate orientation for multi-objective analysis
later.

3.3.2 GPU-Accelerated Support Volume Calculation. Algorithm 3
outlines how support volume is calculated on the GPU. The process
begins by copying the mesh from CPU memory to the GPU. This
is done a single time before individual candidate orientations are
studied to avoid excessive transfer operations. Next, triangles in the
mesh are assigned to free GPU threads. Then, the angle between
the triangle’s normal vector and the build surface’s normal vector,
𝜇, is calculated. 𝜇 is then compared with the user-specified critical
support angle 𝜃 . The critical support angle is determined based on
printer and material capabilities and is often around 45°. If 𝜇 > 𝜃

then the triangle must be supported.

Algorithm 2 Algorithm to compute the first-layer area on a GPU
Require: A candidate orientation as point & normal, a layer height,

and a closed manifold triangle mesh
1: plane← Create an infinite plane that contains point oriented

along the normal vector
2: Shift plane along it’s normal vector by one layer height
3: for all triangles in mesh do {in parallel on GPU }
4: if plane intersects the triangle then
5: Save intersection line on GPU indexed by thread ID
6: end if
7: end for
8: gpuSynchronize()
9: Copy intersections from GPU to CPU memory
10: Stitch intersection lines into polygon(s)
11: total_area← 0
12: for all polygons do
13: total_area + = area(polygon)
14: end for
15: return total_area

To compute support volume, a fast approximation is employed.
Figure 6 shows our method in the simplified 2D case. The method
works by projecting the triangle that needs to be supported down
onto the 2D build surface. Lines are drawn between each original
point and their corresponding projected point. A triangular prism is
then formed using the lines and the original and projected triangles.
Since the original triangle might not be parallel with the projected
triangle, an extra step is required to compute the volume. The prism
is split into two volumes along a plane located at the point in the
original triangle that is closest to the build surface and parallel
to the build surface. The lower volume forms a proper triangular
prism whose volume can be computed with equation 2. The upper
volume forms a non-regular triangular pyramid whose volume can
be computed with equation 3. The two volumes are summed to
yield the total required support volume for this triangle. After all
triangles have been analyzed, a reduction is performed to sum the
volume of all triangles in parallel. The result is the total volume of
supports that will be required to print the object with respect to a
particular build orientation.

𝑉prism =
1
2
· Areabase · Height (2)

𝑉pyramid =
1
3
· Areabase · Height (3)

3.4 Heuristic for an Optimum
The computation phase results in a list of candidate orientations,
each with a support volume and build surface area. Ideally, the
optimal orientation will both maximize surface area and minimize
support volume. In practice, we found that many simple to medium
complexity models did have an orientation that met both criteria.
However, our proposed algorithm would be incomplete without a
method for selecting an orientation when it is impossible to achieve
the best of both constraints. These Pareto optimal situations force
the designer to pick what matters more to them: support volume
or surface area in contact with the build surface. A weighted cost
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Figure 6: Method to compute support volume shown in sim-
plified 2D example. This same method can be expanded into
3-dimensions and instead calculate the volume using a trian-
gular prism instead of a polygon

Algorithm 3 Algorithm to compute support volume of a mesh on
a GPU
Require: A manifold triangle mesh oriented by a candidate orien-

tation
1: Copy mesh to GPU
2: for all triangles in mesh do {in parallel on GPU }
3: Project triangle downward onto 2D bed plane
4: support_prism← form a triangular prism from the original

and project triangles
5: support_required_for_triangle ← vol-

ume(support_prism)
6: Save support_required_for_triangle on GPU using

thread ID as index
7: end for
8: gpuSynchronize()
9: total_support_volume← Sum(support_required_for_triangles)

# Parallel GPU Reduction
10: return total_support_volume

function was considered, but it was found that acceptable weighting
factors depended heavily on the scale of the model, i.e. models
for large scale or industrial machines needed different weights
than models for desktop sized machines. Instead, we developed
a heuristic rule to pick a single orientation as the optimum. The
heuristic is preconditioned on the fact that an optimum choice will
be on the Pareto frontier. Additionally, we prioritize minimizing
support volume over maximizing area in contact with the build
surface. This reflects our focus on using this algorithm with large-
volume industrial 3D-printers where supports are infeasible. It
should be noted, priority can alternatively be given to maximizing
surface area on the bed as well. The heuristic takes as input all
candidate orientations with their corresponding computed support
volume and first-layer surface area, and returns a single optimum
orientation. The procedure is given in algorithm 4. Intuitively, the
heuristic determines a trade-off is acceptable if the increase in
surface area is greater than the (undesirable) increase in support
volume. In practice, tuning the percent change threshold is critical
for identifying the best part orientations. Given a wide variety of
engineering grade models for large-scale 3D-printers, we found 5%
gave the best results. However, specific geometries may require
this threshold to be higher or lower.

Algorithm 4 Heuristic to pick an optimum orientation in a Pareto
optimal space
Require: A list of candidate orientations with their corresponding

support volume and first-layer surface area
1: threshold← 5 percent # This is tuned based on scale of the

machine and geometric features
2: Eliminate all orientations not on the Pareto frontier
3: Sort remaining orientations from least to greatest support vol-

ume
4: best_orientation← orientation with least support volume
5: for all remaining orientations do
6: if Moving from best_orientation to this orientation in-

creases the surface area by at least the threshold and in-
creases the support volume by no more than the threshold
then

7: best_orientation← this orientation
8: end if
9: end for
10: return best_orientation

3.5 Integration into Slicing Software
To make it easier for users to interpret the heuristic results of
this algorithm, a simple UI featuring a color-coded dot plot was
developed and integrated into ORNL Slicer 2.0 [Roschli et al. [n. d.]].
A simple example of this UI featuring the table from Section 4.1 is
shown in Figure 7.

Figure 7: The proposed method implemented as an interac-
tive tool in the ORNL Slicer 2.0 program.

As shown in this image, the dot plot showcases the optimum
point in green with other possible orientations shown in red. Users
can double click on any of the points in the plot and the slicing
software will align the part with the orientation represented by the
dot. The green dot corresponds to the chosen points highlighted
in previous examples and exists on the Pareto Frontier. For this
example, the green dot corresponds to the orientation of the table
being flipped upside down. As mentioned, in this case, there is no
tradeoff for surface or support volume, and so, this orientation is
clearly superior. However, this is not always true as demonstrated
by other previous examples. In those cases, a chosen point is still
highlighted, but a user is free to select a neighboring orientation
if they feel it better serves the construction probability. The code
for the proposed method, along with instructions to compile it, are
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available as part of the ORNL Slicer 2.0 open source repository
[Roschli et al. [n. d.]].

4 CASE STUDIES
We conduct a case study on three illustrative examples – a table,
a propeller, and intersecting rings. These models were chosen to
demonstrate the core of the proposed algorithm, highlight the trade-
offs in selecting an optimum, and the benefits of limiting candidate
orientations. For each example, we include a render of the input
orientation with the best and worst orientations as found by our al-
gorithm. In each render, the build plate is depicted as a purple plane.
Additionally, we provide the algorithms run time for each example
as tested on an Intel i7-12850HX CPU and NVIDIA RTX 2060 GPU.
Finally, we compare all candidate orientations for each model with
a graph where each axis denotes an optimization criterion and each
point a single candidate orientation. Desirable orientations have
high surface area and low support volumes, and are located in the
lower right of the graph.

4.1 Example 1: Table
Figure 8 depicts a model of a table that was oriented using the
proposed algorithm. The model is constructed from four legs and
a flat top. The best orientation as determined by the algorithm
places the table upside-down. Figure 9 shows the heuristic simply
picks the minimum support volume and maximum area without
any tradeoffs required. Consequently, the algorithm determined the
worst orientation would be to stand the table on its legs. This results
in very little surface area and the largest support volume. Although
this model contains 76 total triangles, there are only 10 unique
candidate orientations. The algorithm runs in approximately 0.007
seconds to find the optimal orientation.

Figure 8: (a) table model initial orientation, (b) best orienta-
tion, (c) worst orientation

4.2 Example 2: Propeller
Figure 10 shows a model of a propeller oriented with the algorithm.
The algorithm determined the best orientation would be to place
the flat circular section on the build surface. Figure 10 highlights a
tradeoff made by the heuristic. Although orientations with better
surface area exist, they would require considerably more support
material. This model was oriented in 0.75 seconds by comparing
1,162 candidate orientations.

4.3 Example 3: Rings
Figure 12 demonstrates orienting a large model with the proposed
algorithm. The input model is a set of intersecting rings that is

Figure 9: support volume versus first layer surface area for
the table model

Figure 10: (a) propeller model initial orientation, (b) best
orientation, (c) worst orientation

Figure 11: support volume versus first layer surface area for
the prop model

constructed from 64,896 triangles. Using convex hull analysis, 8,846
candidate orientations where identified. From figure 13, eight global
optimum can be observed. These eight unique orientations that
result in the same surface area and support volume are the result
of symmetry in the input model. The example took 11.9 seconds to
determine the optimal orientation.
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Figure 12: (a) rings model initial orientation, (b) one of the
best orientations, (c) worst orientation

Figure 13: support volume versus first layer surface area for
the rings model. Note that multiple symmetric orientations
dominate all other options as shown by the green triangle.

5 RUNTIME RESULTS
The proposed method was tested on several models to demonstrate
the runtime complexity. The first two objects are standard engi-
neering models and represent typical triangular face counts for
desktop 3D-printers. The two other example objects are organic
lattice structures that contain hundreds of thousands of faces. These
objects represent the high triangle count meshes commonly used
on large-scale 3D systems such as BAAM. Table 1 shows the results
of the algorithm on models by increasing complexity. Figure 14
shows that when compared with other part orientation algorithms
Morgan et al. and Zwier & Wits, the proposed method offers a
much faster approach. To be included as an interactive component
of the 3D printing workflow, an orientation algorithm must run rel-
atively quickly. While previous methods were infeasible for giving
designers real-time feedback, our GPU-accelerated method aims to
provide results in approximately one minute or less, even on very
large input meshes. Previous methods were infeasible for giving
designers feedback about their models in real time. This coupled
with the direct integration into slicing software offers designers an
insightful method to evaluate their part’s optimal build orientation.
In the worst case, this algorithm behaves similar to Zwier’s and
Wits’ method, running in 𝑂 (𝑛2), where 𝑁 is the number of faces
in the mesh. This worst-case occurs when the number of faces in
the convex hull is equal to the number of faces in the original mesh

(such as a sphere), thereby offering no complexity reduction. How-
ever, the proposed GPU accelerated algorithm demonstrated a large
reduction in computation time for models with many faces when
compared with other convex hull-based methods such as Zwier and
Wits.

Table 1: Comparison of the runtime of the algorithm using
increasingly more complex models.

Design Triangular Faces Computation Time (s)

7,286 0.75

64,896 11.9

299,256 22.6

675,528 66.7

Figure 14: runtimes of other auto-orientation algorithms
compared with the proposed method.

6 CONCLUSION AND FURTHERWORK
We have presented an efficient algorithm for determining the op-
timal build orientation of FFF parts. This algorithm can provide
users with real time feedback about the tradeoffs between support
material usage versus adhesion on the build surface. This better
informs designers about the characteristics of their parts and po-
tentially reduces the number of iterations required to achieve an
optimal print. More investigation into directly integrating build
orientation optimization tools into CAD software is needed to fully
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realize the benefits of design feedback. The GPU accelerated nature
of the algorithm also allows for analysis to be conducted on com-
plex models. This is particularly valuable for large and industrial
scale additive manufacturing where models can reach hundreds of
thousands of triangular faces.

The speed of this algorithm makes it viable for integration into
larger optimization processes. Further, the methods for computing
support volume and surface area in this algorithm were imple-
mented to support arbitrary slicing planes. Future investigation
into using the proposed algorithm with angled slicing practices
could yield a method to determine the optimal slicing angle and
the corresponding orientation. These two factors in tandem could
yield a great reduction in support requirements.

Adding more parameters into the cost metric could also yield
better results. Factors such as aliasing, topological optimization,
and anisotropy could be studied to influence the selection of an
optimal orientation. Likewise, an improved support volume calcu-
lation method could be employed to better approximate internal
structures. Ezar et al. provides a GPU accelerated support volume
calculation method that is well suited for the proposed algorithm.
Finally, a study comparing the different optimization factors that
influence various printing techniques would be critical to under-
standing what build orientation parameters should be considered.
This could yield a solution that can recommend certain printing
technologies to designers based on the characteristics of their parts.
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