
Additive Manufacturing 79 (2024) 103912

A
2

Contents lists available at ScienceDirect

Additive Manufacturing

journal homepage: www.elsevier.com/locate/addma

Research paper

OpenVCAD: An open source volumetric multi-material geometry compiler
Charles Wade, Graham Williams, Sean Connelly, Braden Kopec, Robert MacCurdy ∗

University of Colorado – Boulder, Boulder, CO, 80309-0020, USA

A R T I C L E I N F O

Dataset link: https://matterassembly.org/open
vcad

Keywords:
Volumetric design
Multi-material additive manufacturing
Meta-materials
Lattice-structures
InkJet 3D printing
Functional grading

A B S T R A C T

Modern additive manufacturing has made significant advancements in multi-material fabrication techniques
that allow for position-specific control of material deposition. With these advancements, design tools have
fallen behind machine capabilities in specifying volumetric information. Traditionally, design and fabrication
workflows have expressed multi-material objects as several single-material bodies. By storing only the
information about the surfaces of the geometries, information about the volumetric composition of the solids
is unrepresented. The intense interest in compliant mechanisms and meta-materials demands a new design
method that can support architecting material distribution throughout an object. To address these needs, we
present OpenVCAD, an open-source volumetric design compiler with multi-material capabilities. OpenVCAD
provides a scriptable suite of geometric and material design methods that enable efficient representation of
objects with complex geometry and material distributions. OpenVCAD allows functional specification of multi-
material volumes that are parameterized on spatial locations, yielding complex multi-material distributions that
would be impossible to describe using alternative methods. This paper will present the OpenVCAD pipeline,
compare it to related work, and demonstrate its use through the design and manufacturing of functionally
graded multi-material components.
1. Introduction

Enabled by advancements in additive manufacturing (AM), geome-
tries that would be time-consuming, costly, or impossible to fabricate
using alternative methods are now relatively easy, fast, and inexpensive
to realize. Notably, multi-material AM capabilities are now practical for
several distinct deposition technologies. However, these developments
have not been accompanied by corresponding innovations in multi-
material computer-aided design (CAD) tools. Designers and engineers
are increasingly in need of a methodology that allows for precise
placement of multiple materials distributed throughout the full volume
of a design.

The de facto standards for 3D object files in additive manufac-
turing workflows are the STL (Standard Triangle Language) and 3MF
(3D Manufacturing Format). Both of these standards use a surface or
boundary representation (b-rep) to model objects. Converting from
implicit CAD formats, such as a STEP file, requires approximating
the boundary surface as a triangulated mesh. The conversion from
implicit to explicit representation is necessitated by slicing software.
Slicers commonly rely on extracting closed, cross-sectional polygons of
3D triangulated meshes to form the layers of 3D-printed objects [1].
Consequently, engineers wishing to construct objects using multiple
materials must export each component of their assembly as discrete
bodies and manually assign materials in slicing software. This is known

∗ Corresponding author.
E-mail addresses: charles.wade@colorado.edu (C. Wade), maccurdy@colorado.edu (R. MacCurdy).

as homogeneous multi-material design. This workflow fundamentally
limits multi-material objects to simple designs with discrete material
transitions. For designs with several materials graded or blurred to-
gether, the existing boundary-driven workflow is ineffective. Similarly,
boundary representations are incapable of expressing how material
distribution changes throughout a volume. Although the 3MF format
allows for a single file to contain material information, it is still limited
to expressing a body as a single material. These design approaches
and representation standards are incompatible with recently emerged
multi-material AM methods that can deposit varying materials at high
resolution within a design. To address this limitation, there have been
multiple efforts to create a design method for heterogeneous objects,
however they lack the operations and exchange formats necessary for
modern voxel-level control on AM systems. Similarly, these methods
are limited by a trade off between an object’s geometric and multi-
material complexities [2]. To address this gap, we propose OpenVCAD,
a volumetric design compiler. We aim to provide modern AM design-
ers and engineers a framework for efficient multi-material volumetric
description of complex shapes comprised of multiple materials.

In this paper, we highlight the increasing relevance of volumet-
ric modeling, describe existing related design tools, and demonstrate
vailable online 5 December 2023
214-8604/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.addma.2023.103912
Received 29 August 2023; Received in revised form 27 November 2023; Accepted
 4 December 2023

https://www.elsevier.com/locate/addma
http://www.elsevier.com/locate/addma
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
https://matterassembly.org/openvcad
mailto:charles.wade@colorado.edu
mailto:maccurdy@colorado.edu
https://doi.org/10.1016/j.addma.2023.103912
https://doi.org/10.1016/j.addma.2023.103912
http://crossmark.crossref.org/dialog/?doi=10.1016/j.addma.2023.103912&domain=pdf

Additive Manufacturing 79 (2024) 103912C. Wade et al.
the unique capabilities that OpenVCAD brings to multi-material de-
sign. We first explore recent advancements in multi-material addi-
tive manufacturing hardware and discuss existing applications of the
technology. Next, we present related work on computational design
methods employed in rendering and AM workflows and document their
limitations in the application domains. Then, we detail our proposal
of a multi-material design compiler, OpenVCAD. We demonstrate the
performance of OpenVCAD as a workflow for multi-material additive
manufacturing design and explore how it scales on modern large-
volume and high resolution 3D printing systems. Next, we introduce
a suite of objects designed and compiled using OpenVCAD to highlight
how it addresses the demands of modern multi-material applications.
Finally, we conclude with a discussion of potential improvements and
give suggestions for applications of OpenVCAD.

2. Related work

OpenVCAD builds on the foundations of both single-material homo-
geneous and multi-material heterogeneous design to provide a frame-
work for multi-material AM. We focus on creating a cohesive 3D-
printing workflow to fully leverage recent advancements in multi-
material hardware and applications. In this section, we discuss critical
advancements in additive manufacturing hardware that have created
a greater need for multi-material design tools and make OpenVCAD
timely and necessary. We will present several application areas where
advances in multi-material AM design are vital for enabling future
work. Finally, we will discuss related methods for doing both homo-
geneous and heterogeneous design for additive manufacturing as well
as related work in computer graphics and rendering.

2.1. Multi-material additive manufacturing technology

The widespread adoption of 3D-printing (3DP) necessitates a
paradigm shift in the way engineers design objects. Without constraints
of traditional subtractive fabrication, additive manufacturing enables
greater flexibility in the geometry of engineered objects. Consequently,
there has been extensive development of deposition modalities and
their expansion to multiple materials. Common deposition modalities
that allow multiple materials include Fused Filament Fabrication (FFF),
Vat Photopolymerization or Stereolithography (SLA), Direct Ink Write,
Inkjet, Binder Jetting, and Powder Bed Fusion [3]. Multi-material
machines have seen improvement in two technologies: printers with
multiple simultaneous deposition points, and diverse build materials
with unique properties (e.g. flexibility, conductivity, strength, etc.). The
ability to interleave multiple materials has extended 3DP toward the
production of full-color objects, and parts with graded material prop-
erties [4]. Researchers have also used multi-material 3DP to simulate
biological tissue [5] and to create low-cost, open source prosthetics [6].
Recent innovations in multi-material AM methods for FFF, SLA, and
Inket motivate the need for a comprehensive design workflow. We
provide a brief overview of recent advances in the multi-material
capabilities of each of these processes to highlight the gap between
fabrication capability and design methods.

Fused Filament Fabrication and Direct Ink Write have seen many
innovations with multi-material 3DP in the form of multiple extrusion
points and filament multiplexers [7–9]. Both innovations allow for
the alternating deposition of different materials within the same layer
of a print. There are many commercially available two channel FFF
printers on the market. Many of these machines use a single printer
head with two material channels. On each layer the channels will
take turns depositing material in particular regions of the print. Recent
advancements have created systems that extend this method by using
multiple discrete print heads that are interchanged to add greater
numbers of material channels [7]. Similarly, multiplexing systems like
Prusa Research’s MMU3 allows for the material in a single deposition
2

channel printer to be automatically changed during a print [9]. How-
ever, these setups are limited to a small number of material types,
typically less than 6, and the overhead involved in switching material
or print heads within a layer can dramatically increase print time, and
decrease resolution.

Similar to FFF, Stereolithography (SLA) has seen advancements in
its capability to produce multi-material designs. With the development
of multi-vat printers, there has been recent work in the functional
grading of parts [10,11]. This method has fabricated robots with piezo-
electric actuation and multi-material hydrogels [12,13], as well as
electromagnetic devices consisting of materials with differing dielectric
constants [14].

Material jetted 3D-printing, also known by its commercial trade
names Polyjet [15] or MultiJet Modeling [16], uses inkjet technology
to deposit micro-scale droplets of material. By using multiple fluid
channels, it also offers rapid transitions between materials during a
print and higher combined throughput and precision compared to other
AM approaches, typically providing a large (>30 liters) build volume
with feature sizes below 150 μm [17]. Inkjetting offers the unique
capability of enabling materials with widely varying properties to form
composites with visual and mechanical gradients [18], active parts in-
cluding semiconductors and electrical circuits [19–21], and functional
‘‘print-in-place’’ objects requiring no additional assembly [22–24]. This
paper will focus its methods on inkjet printing because of the superior
deposition control it currently provides, however a section detailing
applications to other AM practices is provided at the end.

2.2. Applications of multi-material additive manufacturing

Multi-material AM methods suggest a path toward integrated man-
ufacturing of entire systems in which the precise material distribution
determines the functionality. Recent work in ‘‘material intelligence’’
has attempted to imbue macroscopic materials with functional prop-
erties. For example, multi-material AM techniques were employed to
produce lattice-based, meta-material objects that exploit both geometry
and material distribution [25] to achieve extreme performance. In
another example, the critical stress and strain in a soft material could
be independently adjusted by controlling the material distribution [26].
Further, the complete functional mechanism of a door latch was re-
alized by creating specific architected sub-domains within an overall
structure [27]. The same authors showed a variety of other compliant
structures, for which they created a custom design-automation editor
specific to the compliant structures that were the focus of the study.
More broadly, the application of two or more material components
characterized by continuous gradual changes in material distribution
is known as Functionally Graded Materials (FGMs) [2]. Advancements
in AM hardware have made it possible to fabricate FGMs with ease,
leading to FGMs becoming a driving force behind the development
of multi-material heterogeneous design methods [28,29]. As such, a
heterogeneous design method for AM should include features that
enable the easy and efficient expression of FGMs.

Besides fabricating FGMs, another major benefit of AM techniques is
the simplification of assemblies. Emergent methods for multi-material
fabrication have facilitated hybrid electronics - the co-printing of struc-
tural material alongside conductive structures [30]. There has been
development in printable strain sensors for monitoring structural health
by printing with both non-toxic and conductive polylactic acid fila-
ments [31]. In their survey paper on 3D-printed electronics, Persad
et al. stated that ‘‘there is still room for the development and integration
of software tools for the design and modeling of antennae and sensor
structures which are intended to be manufactured using these 3DP
technologies. [32]’’ As such, a robust heterogeneous AM design method
should interface with simulation software.

Another emerging area of multi-material AM fabrication is printed
robotics. Recent work in multi-material inkjet fabrication has shown

Additive Manufacturing 79 (2024) 103912C. Wade et al.

p
d
t

s
t
b
𝑓
o
e
a
o
h
A
b
m
p

2

b
w
W
d
f
w
d
o

2

a
s
m
e
c
f
s
i
s

that co-printing solids and liquids is possible [33]. This allows for com-
plex fluidic designs that other methods of manufacturing either cannot
produce or would require onerous steps to assemble. This previous
work demonstrated the complete fabrication of a hexapod robot, fully-
automating the production in a single multi-material printing step [34].
Additionally, there has been further work detailing the liquid–solid
fabrication method and providing examples of other structures that
could be fabricated in this manner. Heterogeneous design is necessary
to facilitate the expression of both solid and liquid regions in these
fabricated objects. Related work in liquid and solid co-printing on
inkjet systems has shown that viscoelastic behavior can be tailored
by intermixing fluid and polymer during the printing process [35,36].
MacCurdy and Lipton presented a method to architect impact and
vibration absorbing meta-materials for integration into robots using an
algorithmic approach [35]. Their work demonstrated that material con-
centration can be engineered to yield architected viscoelastic behavior.
Lipton expanded on this work by employing liquid and solid co-printing
to embed fluid regions in impact absorbing closed-cell foams [36].
These applications rely on fitting numerical models using mechanical
testing and characterization to establish a relationship between mate-
rial concentrations and mechanical behavior. The characterization of
these printed materials results in a mathematical expression that can be
used by designers to control the mechanical behavior of their part. As
such, a heterogeneous design method should allow designers to express
material concentrations as spatially parametric expressions.

Medical image printing and pre-surgical planning models are an-
other area of particular interest for heterogeneous multi-material de-
sign. Recent work has shown that medical images can be processed for
and printed on inkjet systems [37,38]. These works include printing
both visually and mechanically realistic pre-surgical planning models.
Jacobson presented a workflow for performing bitmap-based print-
ing of pre-surgical planning models using voxels [39]. However, one
key problem that remains is creating realistic tissue analogs. Related
works have shown that meta-materials can be architected with de-
sired material properties on inket systems [35,36]. Similar work by
Doubrovski et al. has shown that medical images can be used to
design multi-material heterogeneous prosthetic objects [40]. As such, a
robust heterogeneous design method should support medical scan data
as input and provide image processing utilities such as thresholding
and convolution to support the processing of raw data into realistic
pre-surgical planning models. Furthermore, a method for processing
medical images should include the ability to interface scan data geom-
etry and materials with engineered objects, such as prosthetics, to yield
custom-fit orthotics.

2.3. Homogeneous multi-material design

By far the most common method of multi-material design employed
by designers today is homogeneous solid body modeling. In this process
multi-material objects are expressed as multiple discrete solid bodies
which are each assigned a material channel before printing. This multi-
material AM work reflects the underlying geometric representation
employed by modern CAD software such as SolidWorks or Fusion360.
These CAD programs use a mixture of CSG and b-reps to visualize
and create solid bodies. A b-rep is a solid whose surface has been
subdivided into a collection of cells made up of vertices, edges, and
faces. Further, it is a collection of orientable surfaces bounded and
connected without self-intersection to form an object that conveys
topological information [41]. Similarly, traditional CSG defines a solid
only by its surface. A GPU-accelerated CSG slicer, known as IceSL,1 was
roposed by Lefebvre et al. that can do multi-material homogeneous
esign [42]. CSG was created to visualize 3D-objects and intended
o be used with ray tracing to determine where external surfaces

1 https://icesl.loria.fr/.
3

should be displayed on screen [43]. Thus, CSG and b-rep approaches
are limited in the expression of heterogeneous material distributions.
As an example, when using b-rep, each model can only consist of a
single material that is solid throughout the entirety of the bounded
surface [44]. Practically, this dictates that for every independent vol-
ume and material type, there must be a separate boundary. When
representing the continuous material distributions that are common
in FGMs, sampling and thresholding is necessary to separate the con-
tinuous material into discrete assignable regions. As the number of
threshold regions increases, so does the number of required b-reps and
corresponding computational cost of toolpath planning. Additionally,
this threshold approach creates sharp material transition zones that
can lead to structural weaknesses [45]. While solid body modeling has
historically been sufficient for subtractive manufacturing processing,
surface representations lack the volumetric information required for
emerging multi-material AM methods.

2.3.1. Functional geometry representations
One common problem faced in computer aided design is the com-

pactness of expressing complex geometry. Likewise, many AM CAD
programs rely on verbose and approximate geometry representations
like triangulated meshes. These b-rep files have two primary disad-
vantages: file size and approximation. B-reps typically also require
interactive design software to define objects. This has inhibited b-rep
adoption in simulation and optimization workflows because manual
design iteration is required by the user after each step. Pasko et al.
proposed an alternative to b-rep called functional representation (f-
rep) [46]. F-reps are composed of functions in the form 𝑓 (𝑥) ≥ 0. The
surface of an object is the set of points such that 𝑓 (𝑥) = 0. A point in
pace that evaluates to <0 is outside of the object and evaluates to >0 if
he point is inside of the object. The function, 𝑓 (𝑥), is viewed as a ‘‘black
ox’’ and can contain math expressions or parametric code. However,
(𝑥) must have parameters for spatial sampling. Furthermore, f-rep
bjects can be combined using union, intersection, and subtraction op-
rators. Since all operations in F-reps can be defined analytically, they
re particularly well suited for applications that required a high degree
f programmatic parameterization such as optimization [47]. F-reps
ave also been effective in modeling volumetric lattice structures [48].
dditionally, f-reps have been extended to not only represent geometry,
ut also describe volumetric features of an object such as opacity or
aterial distribution [49]. We will discuss this application and how it
ertains to heterogeneous design in more detail in the next section.

.4. Heterogeneous multi-material design

We will classify related heterogeneous design methods into two
road categories: those directly applicable to AM workflows, and those
hich are more broadly intended for computer graphics and rendering.
e classify a heterogeneous design method as applicable to AM if it

irectly address its application to the slicing and preparation of print
iles for a multi-material AM process. At the conclusion of these sections
e provide a table that synthesizes the current state of heterogeneous
esign methods and highlights the shortcomings that we address with
ur proposed method.

.4.1. Heterogeneous design for graphics and rendering
Heterogeneous design is a common problem faced by the graphics

nd rendering community. Typical applications of heterogeneous de-
ign involve the expression and rendering of volumetric data such as
edical images, water, clouds, and fire [50]. This data is routinely

xpressed as 3D voxel grids that store information on material con-
entrations, opacity and density. Two of the most common methods
or rendering voxel data are texture slicing and ray-tracing. Texture
licing involves sampling the heterogeneous design at regular intervals
nto texture memory on a graphics processing unit (GPU) using data-
lice polygons [51]. By rending the slices from farthest to nearest, a

https://icesl.loria.fr/

Additive Manufacturing 79 (2024) 103912C. Wade et al.

a
y
b

i
d
a
i
w
i
O
e
s
i
t

n
c
f
P
c
a
h
a
a
t
m
t
P
m
T
i
B
c
C
a
n
f
d
b

l

v
a
b
s
d
r
b
t
a
a
i
a
r

b
i
a
t
i
a
m
t
s
o

e
a
d
n
t
a
a
o

2

m
t
a
p
c
t
m
b
l
s
w
a
T
f
d
g
e

translucent object can be rendered. Similarly, ray-tracing can be done
by first sampling a heterogeneous design into voxels. Rays are then
cast from a camera though the voxel-grid to yield a render of the
design. Both of these methods rely on heterogeneous designs stored
as voxels grids, requiring 𝑂(𝑛3) space complexity. The build volume
nd resolution of modern inkjet systems such as the Stratasys J750
ield designs with up to 396 billion voxels, presenting a computational
arrier for using traditional voxel design tools with modern AM.

Museth proposed OpenVDB, a sparse-voxel data structure that can
mprove the memory footprint [50]. OpenVDB provides a suite of
esign tools for manipulating voxel design such as Boolean operations
nd affine transforms. Museth improved on the CPU-only limitation
n OpenVDB by providing a GPU-native sparse-voxel data structure
ith NanoVDB [52]. However this massively parallel version does not

nclude many of the design tools that were provided with the original
penVDB library. Although OpenVDB and NanoVDB can provide an
fficient representation for heterogeneous models that contain large
parse regions, designs that contain random material distributions, as
s common with stochastic sampling used in inkjet printing, diminish
he efficacy of the sparse data structure.

A key limitation of voxel data structures is their discrete sampled
ature. Similar to how f-rep geometry has a smaller storage footprint
ompared to the same geometry sampled as a triangulated mesh,
unctional representation for materials is more efficient than voxels.
asko et al. proposed a method that uses 𝑛 user-defined scalar fields,
oupled with a geometry primitive, to represent geometry and other
ttributes such as density or opacity of an object [49] called Constructive
ypervolume modeling. Using Pasko’s method, a designer can combine
nd modify multiple objects, each with their own multidimensional
ttribute sets, using operators in a tree. In this structure, object primi-
ives are in the leaves and operations in the nodes. Ambiguities in how
in/max operations were applied to heterogeneous material distribu-

ion attributes in Pasko’s original work were later solved by Fayolle &
asko using signed approximate real distance functions [53]. Pasko’s
ethod uses a special constructive tree similar in structure to a Blob-
ree [54–56]. Pasko’s constructive tree is a hierarchical structure where

mplicit surfaces are leaves and operations (blending, warping, and
ooleans) are nodes. When attributes are defined in non-leaf nodes of a
onstructive tree, values override attributes lower down the hierarchy.
onstructive hypervolume modeling is a theoretical framework that was
pplied to heterogeneous texturing of rendered models and lacks the
ecessary methods for multi-material design for AM systems. One key
eature that is missing is a method to sample the continuous f-reps that
efine material distributions into discrete voxel print formats such a
itmap stacks. Additionally, Constructive hypervolume modeling defines

attributes as a high level concept. Although this definition allows for
attributes representing many different features such as opacity, density
and temperature, their focus on abstraction lacks a method to ensure
a valid volume-fraction is defined everywhere in R3 when modeling
material distributions.

2.4.2. Heterogeneous design methods for AM
OpenVCAD builds on insights from several existing heterogeneous

design methods specifically targeted at AM. VoxelFuse is a tool for de-
sign and fabrication of functionally graded materials and solid bodies,
and incorporates Brauer and Aukes’s voxel-based CAD framework [57,
58]. The framework allows for modeling with multiple materials by
storing CSG-constructed solid bodies and material concentrations as
voxels. Voxels allow for the simultaneous definition of shape and ma-
terial. Additionally, the voxel-based framework allows users to define
keep-out, clearance, web, and support regions that simplify design
processes specific to the intended method of manufacturing. Further-
more, VoxelFuse incorporates a voxelization engine and simulation
capabilities. The voxelization engine can convert mesh files into voxel
4

representation and allows for the mixed use of VoxelFuse with other
common CAD tools that produce mesh files, such as OpenSCAD, Solid-
Works, or Fusion360. The included simulation capabilities are based on
the VoxCAD and Voxelyze frameworks [59]. While VoxelFuse offers a
variety of features for designing printed FGMs, its primary drawback
is its reliance on a voxel-backed data-structure. VoxelFuse’s reliance on
a dense voxel data structure prevents it from scaling to modern inkjet
volumes. In VoxelFuse, operations are 𝑂(𝑛3) with the number of voxels,
imiting the size and complexity of objects that can be designed.

Foundry and OpenFab are design tools that enable multi-material
olumetric design [60,61]. OpenFab focuses on using multiple materi-
ls of varying color for rapid manufacturing and has been applied to
oth robotics and aesthetic design. OpenFab uses a two stage approach
tarting with a boundary-surface phase as input, followed by a volume-
efinition phase. In both phases, textures and ‘‘fablets’’ are applied to
ender a graphic across the constructed geometry. Shapes are created
y using a scene graph describing a set of object b-reps that is then
essellated and eventually voxelized before being dithered and exported
s a final output. Foundry boasts a more polished user interface, but
lso focuses on texture rendering and synthesis. The premise of Foundry
s to modify the material composition of existing geometries. This tool
llows the user to create alloyed or functionally graded materials, but
equires the user to generate the geometry using a separate tool.

A related tool, GraMMaCAD, allows a user to import an existing
oundary-surface definition and interactively define material gradients
n various regions of the part [62,63]. While intuitive to use, inter-
ctive tools that import existing solid-body geometry become tedious
o use when many sub-regions of the part need to be independently
dentified and addressed by the user. These complex geometric features
re common in many applications including soft robotics, functional
eta-materials, and hybrid electronics. Instead, design tools that na-

ively operate on volumes, and which allow programmatic design via
cripting are necessary to allow the creation of complex multi-material
bjects.

Elber et al. explore the evolution of geometric modeling tools,
mphasizing the shift from Non-Uniform Rational B-splines (NURBs) to
B-spline based volumetric representation (V-rep) [64]. Their paper

iscusses how V-reps can support the creation of porous, heteroge-
eous, and anisotropic objects. They argue that V-reps allow for a
ighter integration between multi-material design and finite element
nalysis, facilitating the manufacturing of functionally graded materials
nd geometries. The source code for Elber’s work is available as part
f the IRIT Modeling Environment.2

.4.3. Current challenges for heterogeneous AM design
In their review paper titled ‘‘Modeling and Visualization of Multi-

aterial Volumes’’, Fayolle et al. stated the following [2]: ‘‘Currently,
wo extreme cases are common in the research literature; it is either
n object with simple geometry (e.g., cube or cylinder) with a com-
lex material distribution or a complex object with simple material
omposition. However, the ultimate goal in this research direction is
o provide methods and tools of defining complex, shape conforming
aterial distributions for objects with complex geometry.’’ Achieving

oth geometric and material complexity has been an ongoing chal-
enge in the heterogeneous design space. Volumetric objects can be
pace inefficient, hard to express, and incompatible with existing AM
orkflows. Fig. 1 shows a summary of the existing homogeneous
nd heterogeneous design methods and the features they support.
hese features include items identified by Fayolle et al. as critical
or enabling simultaneous complexity of object geometry and material
istribution [2]. Additionally, we include relevant features such as
eometry types supported, medical imaging utilities, and methods that
nable direct application to multi-material AM systems. To the authors’

2 https://gershon.cs.technion.ac.il/irit/.

https://gershon.cs.technion.ac.il/irit/

Additive Manufacturing 79 (2024) 103912C. Wade et al.

C

Fig. 1. Comparison of single and multi-material computer aided design methods. (a) Open CASCADE [65]. (b) Function representation in geometric modeling: concepts, implementation
and applications [46]. (c) HyperFun project: a framework for collaborative multidimensional F-rep modeling [66]. (d) OpenSCAD- The Programmers Solid 3D CAD Modeller [67]. (e)

ollective work of Museth et al. [50,52]. (f) Collective work of Brauer and Aukes [57,68]. (g) GraMMaCAD: Interactively Defining Spatially Varying FGMs on BRep CAD Models [62].
(h) Collective work of Vidimče et al. [60,61]. (i) Collective work of Jacobson et al. [37–39]. (j) Voxel-based fabrication through material property mapping: A design method for bitmap
printing [40]. (k) Constructive hypervolume modeling and its derivative work [49,53].
knowledge, OpenVCAD is the only available method that can address
this range of needs.

Several methods depicted in Fig. 1 illustrate a lineage of devel-
opment in computer-aided 3D-design. For instance, Hypervolume is
developed upon Hyperfun, which in turn is based on F-reps. Our in-
tent with the introduction (and Fig. 1) is to highlight the historical
progression of these methods, showcasing the progress in computer-
aided design, while pointing out that no single tool implements the
suite of capabilities that we think are currently necessary. We highlight
the progression by referencing both foundational and derivative works.

Additionally, this approach provides a contextual framework for
understanding related developments that diverged from these interme-
diate methodologies. For example, OpenSCAD extends upon Hyperfun’s
foundation but does not incorporate the heterogeneous design function-
alities featured in the Hypervolume extension. Similarly, by comparing
geometric representations like B-reps and F-reps with software tools,
we demonstrate how different implementations selectively incorporate
elements from each representation. This is relevant because our goal in
this paper, and for OpenVCAD, was to integrate and extend ideas from
the past 40 years of computer-aided 3D design that we think are useful
to users of modern volumetric multi-material 3D printers.
5

2.5. Geometry compilers

OpenVCAD is a multi-material geometry compiler. Therefore it is
necessary to discuss related work on geometry compilers. Boundary
representations use primitive geometry types such as points, lines
and curves combined with basic CSG-like operations to form objects.
Similarly, volumetric design routinely employs a single primitive, the
voxel, to express geometry. These geometry representations are usu-
ally created using interactive CAD software. Parametric features are
enforced by the CAD system and can only be modified using a graphical
user interface, limiting the complexity of highly parametric objects. To
address these concerns, attempts have been made to define geometry
and heterogeneous material distributions using a compiled approach.
In the geometry compiler paradigm, the designer expresses an object
using a specific programming language. Various keywords, functions,
variables, and loops are used to define the object’s geometry and
attributes. The text is passed to a compiler that converts it into another
desired format such as a triangulated mesh or render.

One of the earliest geometry compilers was proposed and released
as an open source project by Pasko [66]. Known as Hyperfun, this

Additive Manufacturing 79 (2024) 103912C. Wade et al.
Fig. 2. An OpenVCAD tree that builds an object using mixed geometry and materials. The tree uses a functionally defined cone for the base, a sphere for the top, and functional
grading to mix materials.
tool used F-rep in conjunction with a special programming language
to define highly parametric objects. The Hyperfun language provided
several different geometric operations like union, difference, intersec-
tion, as well as math function like sqrt, exp, log, and sin. An
extension of Hyperfun into heterogeneous design was done by Pasko
in ‘‘Constructive hypervolume modeling’’ [49] and later expanded by
Fayolle [53]. Hyperfun was also extended to support functional micro-
structure design and 3D printing [48].

Similarly, OpenSCAD is a programming-oriented, parametric design
tool for creating solid bodies from boundary surface representations.
Users define geometry by writing a script with OpenSCAD’s program-
specific language. OpenSCAD serves as the compiler that processes the
scripts as CSG trees and renders the 3D object. CSG trees represent
Boolean combinations of primitive shapes (e.g. cubes, spheres, and
cylinders) to describe more complex geometries. While OpenSCAD is a
robust and accessible tool for 3D modeling, it retains the limitations of
the underlying boundary surface representations. To represent objects
with multi-materials using OpenSCAD, the designer must export each
discrete material region as a single body; designs with regions of
multi-material graded or densely interdigitated material distributions at
realistic resolutions require unreasonable file sizes and compile times.
This constraint hinders OpenSCAD’s adoption in multi-material 3D
printing workflows.

3. Volumetric multi-material design for AM

To leverage advances in multi-material additive manufacturing,
designers need access to easy and intuitive design methods. Toward this
goal, we propose OpenVACD, an implicit geometry scripting language
and compiler for volumetric representations. Our scripting interface
enables a hybrid design approach, combining f-rep geometry with a
user-definable vector field of material distributions and specific oper-
ations relevant to AM. The OpenVCAD language consists of geometric
primitives and combinatory operations to describe complex 3D shapes
made of multiple complex material distributions. Designers can use
familiar scripting components, such as keywords, functions, and braces,
to express a hierarchy of primitives and combinatory operations. Lever-
aging the advantages provided by a geometric compiler paradigm,
our scriptable approach allows for parametric designs that can be
6

configured for application specific needs. Furthermore, many of the
application domains of OpenVCAD require the modularity provided
by a scriptable geometry approach. For instance, with a scripted ap-
proach, forward and reverse integration of parameters for optimization
of material distribution and geometric features is possible. This can
be achieved by first assigning variables to parameterize geometry and
material distribution in the design script. A method to compile VCAD
designs into a volumetric meshes for finite element analysis (FEA)
is discussed later. The FEA mesh can then be simulated for multiple
desired mechanical or material behaviors and fitness functions derived.
The fitness functions can then be used in a heuristic optimization
method such as NSGA II [69] to determine new variables for future
design generations.

3.1. Tree definition

OpenVCAD scripts are parsed into a tree structure that acts as a
blueprint for the object to be designed. Leaf nodes express geometric
features and optionally material distribution. Leaf nodes are specified
with various keywords within the scripting language. Parent nodes can
be either composite nodes that define transformations or combinations
of geometric primitives, or multi-material nodes that define material
distributions. In the scripting language, parent–child relationships are
denoted with functions and braces. The tree structure enables efficient
look-up for fast sampling of the composite design in R3. As a result,
all nodes in the OpenVCAD tree are of the form 𝑁𝑜𝑑𝑒(𝑥, 𝑦, 𝑧), where
the geometry and material (or absence of) at any point in space can be
accessed using Cartesian coordinates. Fig. 2 shows an object expressed
using the OpenVCAD tree. Geometry is defined as leaves in the tree
using the f-rep() node to define a cone and sphere() node. A
composition node is then used at the parent level to translate the sphere
upwards. Furthermore, a union() node is applied to combine the
discrete geometries into a single object. Finally, a functional gradient
is applied across the object to blend two materials.

Geometry and material distribution are sampled independently in
OpenVCAD. Geometry is sampled in the form 𝐠(𝑥, 𝑦, 𝑧), where values
<0 correspond to inside, =0 are on, and >0 is outside of the surface.
Similarly, let 𝐦 ∶ R3 → R𝑛 be a function representing material
distribution. For any point (𝑥, 𝑦, 𝑧) ∈ R3, the function 𝐦(𝑥, 𝑦, 𝑧) returns

Additive Manufacturing 79 (2024) 103912C. Wade et al.

i

Table 1
Summary of how nodes in the OpenVCAD affect the evaluation of the geometry 𝐠(𝑥, 𝑦, 𝑧) and material 𝐦(𝑥, 𝑦, 𝑧) spatial functions.
These nodes are not an exhaustive list of the nodes available in OpenVCAD, but are representative of the set of nodes that
perform functional material representation, ‘‘boolean’’ operations, affine transforms, functional geometry representation, and
primitive geometries, respectively from top to bottom in the table.
Node Node parameters 𝐠(𝑥, 𝑦, 𝑧) 𝐦(𝑥, 𝑦, 𝑧)

F-grade 𝑚new(𝑥, 𝑦, 𝑧) 𝑔_𝑐ℎ𝑖𝑙𝑑(𝑥, 𝑦, 𝑧) 𝑚new(𝑥, 𝑦, 𝑧)

Union NA min(𝑔child_a(𝑥, 𝑦, 𝑧),
𝑔child_b(𝑥, 𝑦, 𝑧))

normalized sum
of 𝑚child_a and 𝑚child_b
OR specified 𝑚child_x

Translate (𝛥𝑥 , 𝛥𝑦 , 𝛥𝑧) 𝑔child(𝑥 − 𝛥𝑥 ,
𝑦 − 𝛥𝑦 ,
𝑧 − 𝛥𝑧)

𝑚child(𝑥−𝛥𝑥 ,
𝑦 − 𝛥𝑦 ,
𝑧 − 𝛥𝑧)

F-rep 𝑓 (𝑥, 𝑦, 𝑧), specified material 𝑓 (𝑥, 𝑦, 𝑧) 100% specified material
Sphere Radius, specified material 𝑥2 + 𝑦2 + 𝑧2 − 𝑅2 ≤ 0 100% specified material
Table 2
Time complexity of evaluating individual nodes in OpenVCAD. For leaf nodes, an
individual node refers to a tree with only that node in it. For operator nodes,
convolve() and f-grade(), the sphere() node is used as the only child, forming
a two-node tree.

Node Time complexity Where

Sphere 𝑂(1) –
Cube 𝑂(1) –
Mesh 𝑂(1) –
Convolve 𝑂(𝑘𝑥 × 𝑘𝑦 × 𝑘𝑧) (𝑘𝑥 × 𝑘𝑦 × 𝑘𝑧) is the size of the kernel
F-grade 𝑂(𝑛) 𝑛 is the number of tokens in the largest equation

a vector in R𝑛 representing the volume fractions at that point. Implicit
n this definition is that everywhere 𝐦(𝑥, 𝑦, 𝑧) is defined, 𝐠(𝑥, 𝑦, 𝑧) must

also be defined. Evaluation of a tree starts at the root node and in-
order traversal is performed recursively on children. Fig. 2(c) and
Table 1 detail how various nodes affect the evaluation as the traversal is
performed. Starting at the root and evaluating 𝐦(𝑥, 𝑦, 𝑧) the F-grade
node will replace the child material distribution with a new distribution
by evaluating functions supplied as parameters when the node was
created. F-grade does not affect geometry, so the result of calling
𝐠(𝑥, 𝑦, 𝑧) on the child is returned. Moving to the second level down,
a union is being performed between child_a and child_b. The
Union node is defined with two child nodes. Initially, we calculate
𝛼 = 𝐠left(𝑥, 𝑦, 𝑧) and 𝛽 = 𝐠right(𝑥, 𝑦, 𝑧). Following this, the union of
these two values is determined by computing min(𝛼, 𝛽), which selects
the minimum of the two computed values. 𝐦(𝑥, 𝑦, 𝑧) for the union
node first performs component wise addition between the volume-
fraction vectors returned by calling 𝑚child_x on each child. The resultant
vector is then normalized to ensure components sum to one (alterna-
tively, there is an option to simply return the 𝐦(𝑥, 𝑦, 𝑧) from one of
the children). Following the left hand sub-tree rooted at the union
node, an f-rep leaf node is reached. This node evaluates a user-
supplied signed-distance function, 𝑓 (𝑥, 𝑦, 𝑧), for 𝐠(𝑥, 𝑦, 𝑧). The f-rep
node always returns 100% concentration of a user-specified material
for 𝐦(𝑥, 𝑦, 𝑧). The right hand sub-tree rooted at the union leads to a
translate node. When defining a translate node, the designer
species translation values, (𝛥𝑥, 𝛥𝑦, 𝛥𝑧). These values are subtracted from
the sampled point (𝑥, 𝑦, 𝑧) to yield new transformed coordinate space.
Finally, following the child of the translate node, we reach a
sphere leaf node. The sphere node is a CSG primitive that evaluates
the sphere equation 𝑥2 + 𝑦2 + 𝑧2 −𝑅2 ≤ 0 for 𝐠(𝑥, 𝑦, 𝑧). Identically to the
f-rep node, the sphere node always returns 100% concentration of
a default material for 𝐦(𝑥, 𝑦, 𝑧) (see Table 1).

3.1.1. Leaf nodes: Geometric primitives
OpenVCAD supports two types of leaf nodes for defining geometric

features: (1) CSG primitives and (2) implicit geometry in R3. CSG prim-
itives include cuboids, cylinders and spheres, using cube(), cylin-
7

der(), and sphere() syntax respectively. Alternatively, designers
can express implicit geometry using closed-form expressions in the form
𝑓 (𝑥, 𝑦, 𝑧). When R3 is sampled, a point is considered inside a 3D shape
if the evaluation of 𝑓 (𝑥, 𝑦, 𝑧) returns a number less than zero. Likewise,
the point lies on the surface of the object if 𝑓 (𝑥, 𝑦, 𝑧) is exactly zero.
Designers supply the implicit expression as a parameter of the f-rep
node when writing their OpenVCAD script. The f_rep() node uses
the Exprtk C++ library to parse the mathematical expressions into
a real value [70]. This expression parser is capable of parsing many
common math functions such as exp, sin, pow and sqrt, in addition
to more complicated Boolean logic. When evaluating an expression,
OpenVCAD provides the sampled point in cartesian, cylindrical, and
spherical coordinates. As an example of an implicit geometry node,
Eq. (1) shows the expression for a sphere of radius 𝑅.

𝑥2 + 𝑦2 + 𝑧2 − 𝑅2 ≤ 0 (1)

3.1.2. Leaf nodes: External geometry
In some applications, it can be advantageous to use traditional CAD

tools to express geometry and OpenVCAD to define material distri-
bution. Consequently, OpenVCAD allows for the import of geometry
through two auxiliary nodes: (1) triangulated meshes and (2) voxel
data. The mesh() node allows the designer to import a triangulated
mesh as a leaf node in an OpenVCAD tree. Before the node is sampled
in R3, the triangulated mesh is preprocessed into a signed distance
field stored within a sparse voxel grid using the method described by
Museth [50].

Similar to mesh() node, the voxel() node provides an interface
for designers to import existing voxel data into an OpenVCAD tree.
The voxel() node preprocesses bitmap stacks into a 3D sparse voxel
grid that allows for constant time access of discrete material values
in R3. As an additional step to preprocessing, the voxel() node
remaps asymmetric input data to uniform voxels. This is a critical
component because many volumetric inputs, such as medical imagery,
sample using asymmetric resolutions and need to be remapped to the
voxel size of the target printer. The voxel input workflow is useful
for volumetric 3D printing of presurgical planning models. In this
application space, medical imaging data is processed into stacks of
bitmap files that represent a discrete voxel space. The bitmaps are often
printed with materials that emulate the color of the anatomic object
they represent. OpenVCAD’s multi-material design toolkit is well suited
to perform 3D processing on these medical models to reduce noise,
highlight features, and modify material distribution. For example, Fig. 3
shows cross-sectional slices of a 3D printed brain. When printed with
transparent materials, the object can provide a practitioner with a
handheld 3D visualization to aid in presurgical planning. However, the
original scan data shown in 3(a) contains noise that obscures the view
of interior target regions shown in pink. Fig. 3(b) shows OpenVCAD’s
discrete convolution node (discussed below) being applied as a sharpen
operation in R3 to improve the transparency of the green region by
reducing the noise of the image. Furthermore, OpenVCAD can be used
to map discrete and continuous regions to meta-materials that simulate

the mechanical behavior of specific tissue.

Additive Manufacturing 79 (2024) 103912C. Wade et al.
Fig. 3. (a) The voxel geometry node is used to import volumetric medical imagery for processing. (b) A sharpening kernel is used with OpenVCAD’s 3D convolution node to
reduce noise in the model and improve transparency. Although these images show a single slice for visualization, the image processing occurs in R3. We thank Nicholas Jacobson
from CU Anschutz for providing the medical images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. OpenVCAD code that shows two geometric primitives being modified by translation, rotation, and union composite nodes. The overlapping red and blue regions will form
a new purple region.
3.1.3. Composite nodes
Composite nodes are critical for describing complex shapes. These

nodes define transformations and combinations of both geometric prim-
itives and any valid subtree. Transformations include translate(),
rotate(), and scale(). Combinations refer to the boolean op-
erations of negate(), union(), difference(), and inter-
section(). When two nodes with different materials are combined
through a union operation, their intersecting material distributions are
summed and then normalized to yield a blended region, or the designer
can require that the material from one node take precedence. Other
material transitions can be defined with multi-material nodes, discussed
in the next section. Fig. 4 shows the code format the designer uses to
define composition and geometric primitive nodes in the OpenVCAD
language.

3.1.4. Multi-material nodes: Functional grading
Multi-material nodes represent OpenVCAD’s unique ability to ex-

press heterogeneous volumes. One such multi-material node is the
functional grading (FG) node. FG nodes enable smooth material inter-
faces and precise control over the material properties of the designed
components. FG nodes employ a user-defined 3D vector field to assign
material values to existing geometry. The vector field is 𝑛-dimensional,
where each component represents the volume fraction of a particular
material. To create the material distribution, a user first defines mul-
tiple scalar field equations in R3 of the form 𝑓 _𝑔𝑟𝑎𝑑𝑒(𝑥, 𝑦, 𝑧). These
expressions are independent, but spatially overlapping, volume fraction
functions that each describe the concentration of a single associated
material for all points in a 3D region of interest. Since each scalar field
must be overlapping, we combine them component-wise into a single
vector field. The volume fraction functions are normalized so that they
sum to one for all points. Normalization is essential to guarantee that
8

the evaluation of each volume fraction function accurately reflects the
concentration of the corresponding material present at a specific point
in space.

Although a continuous vector field distribution of materials pro-
vides a compact method for expressing heterogeneous objects, it is
not directly compatible with AM systems that require voxels as input.
Stochastic sampling is needed to convert from a continuous distribution
of materials to discrete voxels. Stochastic sampling, sometimes referred
to as stochastic dithering, is a common procedure used in both 2D
and 3D inkjet printing to create the illusion of more colors than are
present in material channels of the printer. Fig. 5 shows a comparison of
stochastically sampled objects at different resolutions. Each object was
graded across the 𝑥-axis with a blue and a red material using Eqs. (2)
and (3) respectively.

𝑃red = 1
1 + 𝑒𝑥

(2)

𝑃blue = − 1
1 + 𝑒𝑥

+ 1 (3)

OpenVCAD offers two distinct sampling modes: probability and
threshold. In probability mode, the volume fraction functions are
treated as Probability Density Functions (PDFs). This approach inter-
prets a sampled point in the three-dimensional space, R3, through these
PDFs. Consequently, each sampled point generates a probability vector,
which indicates the likelihood of each material being present at that
location. The final material assigned to a specific location (we stipulate
that only one material can occupy a discrete location) is determined
by a stochastic decision, which is weighted according to the calculated
probability vector. Algorithm 1 shows how a continuous vector field of
material distribution can be stochastically sampled into discrete voxels
for printing. The stochasticity ensures that a distribution of materials

Additive Manufacturing 79 (2024) 103912C. Wade et al.
Fig. 5. The same object stochastically sampled into voxels at two different resolutions. As the voxel resolution approaches the scale of an inkjet system (109 voxels) the individual
cell colors blend together. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. 𝑓 _𝑔𝑟𝑎𝑑𝑒(𝑥, 𝑦, 𝑧) performed over an ASTM D412 Dogbone using two overlapping probability density functions in (a) probability mode and (b) threshold mode. In this
example, a tensile strength validation geometry is enhanced with a stronger Material B in the thinner section of the part.
is present when performing functional grading. From Fig. 6(a) we see
this mode allows for the creation of smooth transitions and ‘‘digital
materials’’ by specifying the mixture ratio of multiple materials over a
region.

In contrast, threshold mode allows for deterministic control over
the material composition of a component. In this mode, users define
the same field equations as volume fraction functions; however, the
weighted randomization phase is replaced by selecting the material
corresponding to the highest volume fraction. From Fig. 6(b) it can
be observed that this mode generates sharp material transitions within
geometry. While sharp material transitions can also be created using
only boolean combinations of geometric primitives, thresholding FG
nodes allow for more concise design trees and shorter files. For exam-
ple, we designed the soft-actuator in Fig. 7 using functional grading.
9

We used a single implicit geometry leaf node to generate the shape of
the actuator, and an FG node in threshold mode to define regions of
different material. In contrast, the design would require the union of
19 leaf nodes, one for each discrete region of a single material, if it
were represented solely as Boolean combinations of primitives.

3.1.5. Multi-material nodes: Convolution
While functional grading provides a mechanism for defining ma-

terial transition within geometry, it can be cumbersome for blending
across multiple pre-existing material boundaries, as might occur with
imported geometry. Fig. 8(a) shows an XY slice of a situation where
a designer defined four squares with varying materials. The individual
squares were combined with a Union operation to form a single, multi-
material object. The designer wishes for the four material regions to be

Additive Manufacturing 79 (2024) 103912C. Wade et al.
Fig. 7. Soft actuator printed in three materials. This example was created using a scalar field equation in polar coordinates with a threshold of 1 to generate the geometry, and
was then functionally graded in threshold mode using three distinct scalar fields over the entire bounding box of the model. The above image is the resulting model, printed using
the Stratasys J750 InkJet Printer. The OpenVCAD script for this object is provided in Fig. A.19.
Algorithm 1 Weighted Stochastic Sampling Algorithm

Require: A vector field of material distribution PDFs defined in R3

1: sampled_object ← allocate memory to store material IDs for
every sampled point

2: for each point in sample space R3 do
3: distribution vector ← value of vector field at point
4: rnd ← a random float between 0 and 1
5: for each component in distribution vector do
6: weight ← component.value
7: if rnd < weight then
8: sampled_object[point] ← component.id
9: break

10: end if
11: rnd ← rnd − component.value
12: end for
13: end for
14: return sampled_object

blended at their boundaries to exhibit a smoother transition from one
material to another. To accomplish this goal with functional grading,
the designer would need to develop a set of complex probability density
functions expressed in terms of x and y.

Instead, discrete convolution provides a simpler approach to
smoothing material transitions. Convolution is a common operation
in signal processing, computer vision, and machine learning used to
perform many operations including blurring, sharpening, eroding, dilat-
ing and other image manipulations [71,72]. The convolution operation
expresses how the shape of one function is modified by another. In
image processing, convolution is done with an input image and 2D
kernel. Each pixel of the image is sampled and replaced with the sum of
its neighbors multiplied by the kernel weights. Using a specific kernel,
convolution can be used to perform Gaussian blurring and sharping on
an image.

OpenVCAD defines a node that can be used to perform discrete
convolution over 3D volumetric data. As illustrated in Fig. 9, the
OpenVCAD convolution operation first considers the distribution of
10
materials in the kernel region. Analogous to 2D image convolution,
an N by M by K 3D kernel expresses the weight that neighboring
voxels have at a specific location. These weights are multiplied by
the corresponding material counts at each location to yield a modified
distribution. The material distribution is then used as probabilities for
a stochastic decision on what the material at the center of the kernel
should be replaced with. In Fig. 9, the process results in a 56% chance
that material A and a 44% chance material B will be selected. The
weighted stochastic process then selects and replaces the material at the
center of the kernel. The process is repeated at all sampled locations in
R3 using the original material values to create the mixed boundaries.
Fig. 8(b) shows the result of performing the convolution operation over
an object using a 10 × 10 × 1 blurring kernel.

3.2. Multi-material compiler

The representation of objects as a ‘‘tree of operations’’ allows for
the efficient storage of geometric and volumetric (material assignment)
information in OpenVCAD. Likewise, the expressions of leaf nodes
as implicit geometry maintains a high level of dimensional accuracy.
To maintain high degrees of both object and material complexity,
OpenVCAD allows for material distributions to be defined as operators.
However, defining material distributions in operators is not a univer-
sally better approach. For instance, medical scan data directly couples
material assignments to geometric regions. As such, OpenVCAD allows
for material distributions to be specified alongside geometry for the
voxel() input node. Flexibility in where the material distributions
defined in the tree allows for users to select the method that best suits
the needs of their design.

The flexibility in material specification is made possible by the
OpenVCAD multi-material compiler. Fig. 10 shows an overview of the
various components of the compiler. Designs are specified using the
OpenVCAD modeling language as a text script. The text is supplied to
the parser along with configuration for the specific machine that will
be used print the object. The parser translates the text script into a
tree data structure. Stochastic sampling is then performed based on the
methods specified in the nodes of the tree. A user-selected volumetric
exporter is then used to save the design into a desired format.

Additive Manufacturing 79 (2024) 103912

11

C. Wade et al.

Fig. 8. (a) four adjacent squares are defined with different materials. (b) the convolution is performed on the composite object using a 10 × 10 × 1 kernel. The resulting object
has blended material boundaries.

Fig. 9. Convolution is performed over two material boundaries. The method multiplies the component-wise material distribution to determine corresponding weights for stochastic
selection. The material at the center of the kernel is replaced. In OpenVCAD, this method is extended into three dimensions to perform the discrete convolution over the entire
object.

Fig. 10. An overview of the multiple components of the OpenVCAD multi-material compiler.

Additive Manufacturing 79 (2024) 103912C. Wade et al.
Fig. 11. A screenshot of the OpenVCAD development environment. The left panel contains an editor for the script text. The right panel is a ray-traced sparse-voxel rendering of
the compiled design. The design is first compiled into a NanoVDB grid which is ray-traced. The render is showing two spheres that were convolved along their boundaries to
create a gradient. The opacity control of the view allows us to visualize the internal red material through the outer blue sphere. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
AM workflows use slicing software to convert 3D objects into layer
information that is commonly expressed as either g-code pathing or
pixel-based bitmap stacks. Consequently, numerous slicing packages
exist to convert explicit geometry files, such as Standard Triangle
Language (STL) or the 3D Manufacturing Format (3MF), to a print-
able format [73]. OpenVCAD implements slicing functionality through
volumetric exporters. In the current implementation, we provide three
exporters that can be used for voxel-based 3D-printers, graphics &
rendering, and simulation & optimization. The most common exchange
format accepted by voxel-based printers is the PNG stack. If a design
is exported from OpenVCAD as PNG stacks, each image file represents
a single layer-slice. Furthermore each pixel in a layer image contains
a color mapped to specific material channel in a printer. The directory
of PNG images can then be transferred to the printer for construction.

Interactive rendering is another critical feature of a multi-material
design method. As such, OpenVCAD can export designs to OpenVDB/
NanoVDB voxel-grids [50,52]. In this format, each voxel contains an
integer ID that corresponds to the user-defined IDs in the material
configuration supplied to the compiler. Fig. 11 shows a screenshot of
the OpenVCAD integrated development environment (IDE). The IDE
provides a text editor for the VCAD modeling language script in the left
panel. An option can be selected to compile the design for rendering in
the right panel. The NanoVDB volumetric exporter is used to export
the design as a voxel-grid to the GPU. A ray-tracer is then used to
render the design with realistic shading. Along the bottom of the render
windows are sliders that control the opacity of the materials present
in the design. As seen in the render panel in Fig. 11, the custom ray-
tracer is capable of rendering objects that contain transparent elements,
allowing the designers to visualize internal volumetric structures.

In their review paper on multi-material design, Fayolle et al. stated
that a robust heterogeneous design method must be interoperable with
other computer-aided engineering tools. The OpenVCAD compiler can
12
export designs as volumetric finite element meshes for the simulation
of designs using the Abaqus FEA package [74]. Forward integration
(simulation and analysis) and inverse integration (shape and/or ma-
terial optimization) is possible by using the finite element volumetric
exporter and scripting language input respectively.

When sampling with the volumetric compiler, the designer must
specify the range of R3 and the voxel-size they wish to use for their
design. It is common for voxel-based 3D-printers to use asymmetric
voxels. As a result, OpenVCAD allows designers to specify each XYZ
dimension of the voxels independently used to discretize the design.
This customization allows for different sampling rates and ranges to
be used for each axis. To ensure that all geometric features are ex-
pressed, the designer must ensure that the Nyquist–Shannon sampling
theorem holds for the spatial sampling rate they pick in all three
dimensions [75]. This means picking a sampling rate whose frequency
is at least twice that of the highest frequency component among all of
the geometry and material nodes in the design tree. If periodic functions
are used to define material distributions or geometry, the minimum
sample frequency, 𝐹𝑚𝑖𝑛, can be calculated using:

𝐹𝑚𝑖𝑛 = 𝑚𝑖𝑛
(

2
𝑃0

,… , 2
𝑃𝑖

)

, (4)

where 𝑃𝑖 is the period of the 𝑖th function in an OpenVCAD tree.

3.2.1. Affine invariance
One of the major disadvantages of sampled representations like

voxels is they are not affine-transformed accurately. Unlike b-reps,
voxelized objects are not affine-invariant. Fig. 12 shows the same affine
transformation applied to shapes designed with points & lines and
pixels. As demonstrated in the figure, transforming discrete sampled
objects can lead to decreased model accuracy. Affine variance presents
a major roadblock for designers wishing to create engineering-grade

Additive Manufacturing 79 (2024) 103912C. Wade et al.
Fig. 12. Example of using affine invariant (a) and non-affine-invariant (b) representations while rotations are applied to an object. In (a), rotations are performed on the points
before sampling to maintain affine-invariance. However, (b) is sampled before rotations are applied, leading to error (shown as red pixels) when rotated back to the original
orientation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
objects using discrete volumetric information. OpenVCAD avoids these
issues by leveraging the design tree. Because objects are represented
implicitly as nodes in a tree, we can perform all affine transformations
before the object is sampled. This is accomplished by propagating
parent transformations down to children as the tree is evaluated.

4. Performance analysis

Through benchmarking and analysis, we aim to demonstrate that
the methods proposed here yield a feasible tool for real-world volu-
metric design. Note that these results demonstrate the performance of
the initial version of OpenVCAD, which omits potential anticipated op-
timizations. First, we analyze the algorithmic complexity of evaluating
each of OpenVCAD’s node types. Then, we present a run-time analysis
for slicing single nodes. Finally, we assess the effect of tree complexity
on slice time.

The time complexity of evaluating a single location in R3 for each
node in the OpenVCAD language is given in Table 2. CSG primitives,
such as the sphere() and cube() nodes, are evaluated against pre-
compiled code that runs in 𝑂(1) time. Similarly the mesh() node is
pre-processed into a sparse grid that is evaluated in 𝑂(1) time. The time
complexity of the f_rep() and f_grade() nodes are driven by their
reliance on Dijkstra’s Shunting Yard Algorithm to parse mathematical
string expressions [76]. The Shunting Yard algorithm runs in 𝑂(𝑛)
where 𝑛 is the number of tokens in the equation. Even though the
complexity for functional nodes is not constant, the complexity of
evaluating each location is independent of the model and grid size,
which is critical for keeping run times tractable. In most use cases,
the number of tokens in the f_rep() and f_grade() equations is
small and near constant. Similarly, the performance of convolve()
nodes is dependent on the kernel size, which in practice is typically
small enough to produce near constant-time behavior. This relationship
is illustrated by the timing results of Table 3.

OpenVCAD supports multithreading, therefore the timing bench-
marking tests were conducted using an AMD Ryzen 7 7700X 8-core
processor with 16 threads. In these tests, individual nodes are sampled
13
Table 3
Benchmarking results for individual nodes in OpenVCAD. Each test was completed with
a grid size of [211 , 211 , 212] resulting in 211 ×211 ×212 ≊ 1.7×1010 voxels. Evaluation time
is the number of seconds taken to compile the multi-material design into a volumetric
format. Slicing time is the number of seconds required to save this volumetric data to
stacked PNG files. For a single layer, the slicing time refers only to the time required
to encode that layer’s matrix of color values into the PNG format and save to disk. The
slicing time reported in the table refers to the sum of this time for all layers saved to
disk.

Node Evaluation time (s) Slicing time (s) Voxels per second

Sphere 35 248 3.7 × 107

Cube 44 241 3.6 × 107

Mesh 163 251 2.5 × 107

F-Rep 584 248 1.2 × 107

Convolve 62 250 3.3 × 107

F-Grade 1147 223 7.5 × 106

across a large grid and the evaluation and slicing times were recorded.
Evaluation time refers to the time required to evaluate the tree and
determine the material for each voxel. Slicing time refers to the time
needed to output the voxel information as a PNG file. The workload
was distributed in a way that allowed each thread to individually
sample and export a distinct layer of the object. The data reported in
Table 3 are the wall-clock times taken by the multithreaded evaluation.
The results of benchmarking tests show that the slicing time remains
constant across node types. As indicated by the algorithmic complex-
ities, the evaluation time was higher for nodes that express materials
compared to nodes that only express geometry. The throughput of each
test is expressed as the voxels sampled per second. This metric indicates
the total geometric bandwidth OpenVCAD can compile per unit time.
The evaluation time is of particular interest because this operation is
fundamental to all volumetric exporters. The slicing time is dependent
on the volumetric exporter used and can vary depending on disk quality
and format used. These results show that evaluation of all nodes in
OpenVCAD perform within an order of magnitude of slicing time.

Additionally, we investigated how the complexity of the tree im-
pacts the compile time of an object. This assessment uses the same

Additive Manufacturing 79 (2024) 103912C. Wade et al.
Fig. 13. Example objects used for benchmarking data in Table 4. All examples make use of the f-grade() node. (a) and (b) are defined using the mesh() node. (c) and (d)
are created using the f-rep() node.
Fig. 14. The screwdriver from 13 (b) constructed using a Stratasys J750 Polyjet printer. Multiple materials are used to add a soft-touch handle and a multi-color shaft. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
CPU configuration that was used for Table 3. Fig. 13 shows renders of
the four composite objects that were chosen to demonstrate multiple
OpenVCAD tree configurations and real world use cases. These objects
are varied in physical size and type of nodes used. Fig. 13(a) shows a
mesh node that is graded with two materials. Figs. 13(b) and 14 shows
a screwdriver that is comprised of a mesh node and graded with three
materials. Fig. 13(c) is a soft actuator that is comprised of a functional
geometry node and graded with three materials. Fig. 13(d) shows a
mug that is designed using multiple functional geometry nodes and
boolean operations. The results of evaluating and slicing these four
objects are recorded in Table 4. As listed in Table 4, the largest and
most complex object took approximately 16 min to be sampled into
printable files. In contrast, smaller and simpler objects were converted
in under five minutes. As in the previous benchmarking test, the voxel
outputs per second were within an order of magnitude for all objects
14
tested. This finding indicates that although the time taken to evaluate
an object is dependent on the complexity of the tree, the processing
time is dominated by the size of the objects being expressed.

5. Case studies

The following case studies were conducted using OpenVCAD to
demonstrate its efficacy as a multi-material additive manufacturing
workflow. Both test cases were chosen to highlight OpenVCAD design
trees that use different forms of geometry, material usage, and com-
positing. Likewise, both case studies highlight OpenVCAD’s capability
to design meta-materials and compliant mechanisms.

Additive Manufacturing 79 (2024) 103912C. Wade et al.
Table 4
Benchmarking results various real-world objects shown in Fig. 13.
Example Object size (mm) Voxels Evaluation time (s) Slicing time (s) Voxels per second

OpenVCAD Text𝑎 140 × 7 × 28 2.8 × 108 21 7 1.0 × 107

Screwdriver𝑏 22 × 144 × 22 6.7 × 108 97 15 5.9 × 106

Soft Actuator𝑐 48 × 48 × 75 1.8 × 109 251 41 6.3 × 106

Mug𝑑 96 × 63 × 90 5.6 × 109 836 120 5.9 × 106
Fig. 15. Shows a tree that generates a triply periodic gyroid infill pattern for a wing. The network makes use of the f_rep() node to generate the gyroidal surface and an
intersection() node to combine it with the wing geometry defined in a mesh() node. Finally, a f_grade() node is used to cross-grade two materials together along the
length of the wing. The full 8-line VCAD script is given in Fig. A.20.
5.1. Functionally graded wing

OpenVCAD’s functional geometry node is well suited to express
triply periodic geometry like the gyroid pattern in Fig. 15. Eq. (5)
expresses a gyroidal surface as a function of (X,Y,Z). Using the
f_rep() node in OpenVCAD, we can use this equation to generate
a uniform gyroidal pattern and bound it with a mesh surface to form
the infill as shown in Fig. 15. Adding a functional grading node to the
network creates a cross-grade of two materials to form a meta-material.
The material distribution could be modified using functional grading
to optimize for multiple factors such as stiffness, durability, or thermal
conductivity depending on the location on the wing.

Similarly, Fig. 16 shows the gyroidal infill being further parameter-
ized by varying the unit cell length, 𝑎, across the length of the wing.
The model was oriented such that the longest dimension of the wing
was aligned with the 𝑥-axis. A parameter of 𝑎 = −0.063𝑥 + 1.55 was
used to linearly decrease the unit cell size. This method could be used
in conjunction with simulated stress distribution to achieve a similar
effect to that proposed by Kim et al. [77,78]. In all, the object shown
in Figs. 15 and 16 takes only 8 lines of OpenVAD script to generate and
is provided in Fig. A.20.

sin
(2𝜋

𝑎
𝑥
)

cos
(2𝜋

𝑎
𝑦
)

+ sin
(2𝜋

𝑎
𝑦
)

cos
(2𝜋

𝑎
𝑧
)

+ sin
(2𝜋

𝑎
𝑧
)

cos
(2𝜋

𝑎
𝑥
)

= ℎ (5)
15
5.2. Multi-material organic lattices

A key application of functional grading is with lattice structures.
Lattices leverage the geometric freedom provided by additive manu-
facturing to construct objects that yield better mechanical performance
compared to objects with a homogeneous composition. Multi-material
design adds another dimension by which lattice structures might im-
prove designs. Fig. 17 shows how a basic tetrahedron lattice unit cell
can be created using OpenVCAD. The strut() geometric primitive
node allows the designer to define a cylindrical strut object of a given
length. Using this, a functional grading is applied to each individual
unit strut to yield a member that might resist compression in the center,
and bond well with adjacent struts at the ends. The unit struts are
rotated, translated, and scaled to fit the designed dimension of the
tetrahedron. To combine the six struts into a single object, the sum()
node is used. This node is similar to the union() node in that it
combines multiple children into a single object; however, it differs in
how it combines the child geometry. The sum() node treats a child
geometry node as a scalar field of distances from the surface of the
strut. When sampled in R3 the scalar values are summed and a level
set is taken through it. This, combined with a blending constant, cause
the joints of the tetrahedron to organically morph together similar to
how metaballs behave [79].

Adding members to the lattice is as simple as computing another
point in the 3D triangulation and repeating the steps to define, grade,
transform and sum them with existing struts. Fig. 18 shows this idea

Additive Manufacturing 79 (2024) 103912C. Wade et al.
Fig. 16. Shows the final object from Fig. 15 in detail. The object’s quality was enhanced by decreasing the cell size of the gyroid pattern along the length of the wing. This
preserves geometric detail in thinner sections of the wing. Similarly, a heavier, stiffer material (blue) gives way to a lighter, more flexible material (red) along the direction of
the wing. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
in practice on a larger lattice structure. The strut geometry for this
object was generated by first performing a 3D tetrahedral meshing of a
rectangular prism using the method prescribed by Tournois et al. [80].
For each edge in the tetrahedral mesh a strut is generated and two over-
lapping normal distributions are applied to functionally grade materials
together along the length of the strut. A sum() node is used to combine
all of the struts into a single composite object. This example expands
on the mechanical motivation of Fig. 17 by highlighting a composite
lattice structure with mechanical properties that could be optimized
using functional grading. For example, a designer could tweak the
concentration of an energy absorptive material graded into the center
of the strut. Similarly, architecting the concentration of stiff materials
in certain struts could yield a compliant mechanism that deforms more
under load in certain areas of the design.

6. Bottlenecks and areas for improvements

Although OpenVCAD performs well with the example objects in
Fig. 13, processing time is highly dependent on the object size and
printer resolution. As such, we identify bottlenecks in the current
implementation and propose potential improvements.

One limitation in the current implementation of OpenVCAD is the
inability to prune or simplify design trees containing redundant expres-
sions. An example of redundant design at the cost of performance would
be expressing periodic geometry, such as the soft actuator in Fig. 13(c),
with multiple discrete nodes for each period defined in Cartesian space.
Instead, this same geometry should be expressed over multiple periods
with a parameterized equation using cylindrical coordinates. Similar to
how traditional programming language compilers, like GCC, optimize
the code before generating machine instructions, the OpenVCAD multi-
material compiler would benefit from analogous methods to optimize
design trees.

Furthermore, performance could be improved by reducing the num-
ber of locations sampled to determine the value of each voxel. This
is possible if there are large regions in an object that do not vary
in geometry or material, which is common in real-world applications.
Duff proposed a method that uses interval arithmetic to partition space
to simplify an object’s geometry [81]. Similarly, Keeter proposed an
16
interval arithmetic method that can be used to rapidly evaluate closed-
form implicit surfaces by skipping regions that do not have varying
geometry [82]. Investigation into applying these interval arithmetic
methods to both the geometric and material compositions of an object
could reduce the sampling space and improve performance.

GPU acceleration could improve OpenVCAD’s object compilation
speed. Keeter proposed a method that compiles closed-form implicit
surfaces into an intermediate language that is interpreted using mas-
sively parallel rendering on GPUs [82]. A similar approach applied to
the OpenVCAD modeling language could dramatically reduce object
rendering and sampling times.

Likewise, OpenVCAD allows for full control of material distribution
throughout an object. This puts designers in control of where and what
materials compose a region. However, it is currently up to designers
to ensure that material combinations are printable. This can lead to
a situation where an invalid material combination results in a failed
print, leaving the designer to find a ‘needle in a haystack’ to fix
the error. More investigation into a design validation mechanism is
needed to ensure that unprintable regions are identified and corrected
automatically during the design process.

7. Applications of OpenVCAD to non-inkjet systems

OpenVCAD is currently targeted at AM systems such as inkjet that
support design import via stacked image files, though it also supports
export of boundary surface representations compatible with virtually
all AM systems. Further investigation is needed to apply this method to
systems such as fused filament fabrication, directed energy deposition,
and powder bed fusion. One potential avenue for the application of
OpenVCAD to fused filament fabrication is using multiple hot ends
with appropriate halftoning [4], or mixing extruders. Recent work has
shown that it is possible to mix multiple filaments in melt chamber
of hot ends to create gradients [83–85]. Similarly, researchers have
employed an analogous strategy by using multiple wire feeders to
create material mixtures in the melt pool of a directed energy depo-
sition systems [86]. The mixing ratios of the independent extruders
or wire feeders could be defined using OpenVCAD and sampled across
toolpaths to define gradients. For laser powder bed fusion systems it has

Additive Manufacturing 79 (2024) 103912C. Wade et al.
Fig. 17. Shows a network that generates an organic tetrahedron with graded members. Component geometry is defined as individual unit struts along the 𝑥-axis. The struts are
then functionally graded to form a meta-material where the center (shown as a red material) exhibits better compression resistance when compared with the blue material at
the ends. The blue material exhibits better adhesion between connected strut endpoints. The struts are transformed and combined via a summing operation to yield a composite
tetrahedron. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 18. A 3D lattice structure composed of the organic tetrahedra outlined in Fig. 17.
been shown that varying laser power can yield objects with different

mechanical properties [87]. Future extensions of OpenVCAD could

involve grading laser power to yield objects with similar mechanical

properties to those printed with multiple materials, even with just one

powder.
17
8. Conclusion

In this paper, we have presented a novel volumetric design method
for multi-material additive manufacturing. The OpenVCAD language
and compiler creates a compact and portable representation of dense
volumetric designs. The proposed set of functional nodes establishes
a robust framework for applied research into volumetric 3D printing.

Additive Manufacturing 79 (2024) 103912C. Wade et al.

a
R
t

Fig. A.19. VCAD code used to generate the actuator in Fig. 7.
Fig. A.20. VCAD code used to generate the wing in Fig. 15.
D

l
e
D

D

i
t
A
s

F

b

A

Functional geometry nodes allow designers to express complex and
parametric shapes that retain their accuracy when transformed and
combined to form composite designs. Functional grading and convolu-
tion nodes allow research into lattice structures and meta-materials that
can vary material composition throughout geometric regions. The flex-
ibility of the OpenVCAD tree and compiler enables designs that have
high geometric and material complexity, a dichotomy that has lim-
ited previous methods. Further exploration of ‘‘digital materials’’ and
pseudo-alloys is made possible with OpenVCAD’s extensible modeling
language and compiler. Towards these goals, we have released Open-
VCAD as an open-source project to advance multi-material additive
manufacturing research. While OpenVCAD introduces a new method
for multi-material design, the limitations with evaluation speed and
design validation should be addressed to offer speed that is comparable
with commercially available single-material design software.

CRediT authorship contribution statement

Charles Wade: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Methodology, Investigation,
Formal analysis, Data curation, Conceptualization. Graham Williams:
Writing – review & editing, Writing – original draft, Validation, Re-
sources. Sean Connelly: Conceptualization. Braden Kopec: Conceptu-
lization. Robert MacCurdy: Writing – review & editing, Supervision,
esources, Project administration, Funding acquisition, Conceptualiza-
18

ion.
eclaration of competing interest

The authors declare the following financial interests/personal re-
ationships which may be considered as potential competing inter-
sts: Robert MacCurdy has patent Multi-Material Volumetric Three-
imensional Modeling pending to University of Colorado Boulder.

ata and material availability

All data needed to evaluate the conclusions in the paper are present
n the paper and/or the Supplementary Materials as well as provided on
he public OpenVCAD website (https://matterassembly.org/openvcad).
dditional data related to this paper may be requested from the corre-
ponding author.

unding

This work is supported by startup funds to R. MacCurdy provided
y the University of Colorado Boulder.

ppendix. VCAD scripts for examples

See Figs. A.19 and A.20.

https://matterassembly.org/openvcad

Additive Manufacturing 79 (2024) 103912C. Wade et al.
References

[1] C. Wade, M. Borish, Hybrid curve fitting for reducing motion commands in object
construction, in: 2022 International Solid Freeform Fabrication Symposium,
University of Texas at Austin, 2022.

[2] P. Fayolle, L. McLoughlin, M. Sanchez, G. Pasko, A. Pasko, Modeling and
visualization of multi-material volumes, Sci. Vis. 13 (2) (2021) 117–148.

[3] J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer,
Additive manufacturing of metallic and ceramic components by the material
extrusion of highly-filled polymers: A review and future perspectives, Materials
11 (5) (2018) 840.

[4] T. Kuipers, E. Doubrovski, J. Verlinden, 3D hatching: linear halftoning for dual
extrusion fused deposition modeling, in: Proceedings of the 1st Annual ACM
Symposium on Computational Fabrication, 2017, pp. 1–7.

[5] F. Fenollosa, J.R. Gomà, I. Buj-Corral, A.T. Otero, J. Minguella-Canela, R. Uceda,
A. Valls, M. Ayats, Foreseeing new multi-material FFF-additive manufacturing
concepts meeting mimicking requirements with living tissues, Procedia Manuf.
41 (2019) 1063–1070.

[6] S. Bijadi, E. de Bruijn, E.Y. Tempelman, J. Oberdorf, Application of multi-
material 3D printing for improved functionality and modularity of open source
low-cost prosthetics: A case study, in: Frontiers in Biomedical Devices, vol.
40672, American Society of Mechanical Engineers, 2017, V001T10A003.

[7] A. Castellví, L. Poudelet, A. Tejo, L. Calvo, R. Uceda, P. Lustig, J. Minguella, I.
Buj, F. Fenollosa, L. Krauel, et al., The commissioning of a hybrid multi-material
3D printer, in: IOP Conference Series: Materials Science and Engineering, vol.
1193, IOP Publishing, 2021, 012044.

[8] J. McPherson, W. Zhou, A chunk-based slicer for cooperative 3D printing, Rapid
Prototyp. J. 24 (9) (2018) 1436–1446.

[9] J. Prusa, Original Prusa MMU3 upgrade kit (for MK3S+) | Original Prusa 3D
printers directly from Josef Prusa - prusa3d.com.

[10] J.W. Choi, H.C. Kim, R. Wicker, Multi-material stereolithography, J. Mater
Process. Technol. 211 (2011) 318–328.

[11] R. Wicker, F. Medina, C. Elkins, Multiple material micro-fabrication: extending
stereolithography to tissue engineering and other novel applications, in: 2004
International Solid Freeform Fabrication Symposium, 2004.

[12] H. Cui, D. Yao, R. Hensleigh, H. Lu, A. Calderon, Z. Xu, S. Davaria, Z.
Wang, P. Mercier, P. Tarazaga, et al., Design and printing of proprioceptive
three-dimensional architected robotic metamaterials, Science 376 (6599) (2022)
1287–1293.

[13] Q. Ge, Z. Chen, J. Cheng, B. Zhang, Y.-F. Zhang, H. Li, X. He, C. Yuan, J. Liu,
S. Magdassi, et al., 3D printing of highly stretchable hydrogel with diverse UV
curable polymers, Sci. Adv. 7 (2) (2021) eaba4261.

[14] R. Bahr, X. He, B. Tehrani, M.M. Tentzeris, A fully 3D printed multi-chip
module with an on-package enhanced dielectric lens for mm-wave applications
using multimaterial stereo-lithography, IEEE MTT-S Int. Microw. Symp. Digest
2018-June (2018) 1561–1564.

[15] D. Dikovsky, S. Shtilerman, System and method for fabricating a body part model
using multi-material additive manufacturing (US patent 9,999,509), 2018.

[16] R.N. Leyden, J.S. Thayer, B.J.L. Bedal, T.A. Almquist, C.W. Hull, J.M. Earl, T.A.
Kerekes, D.R. Smalley, C.M. Merot, R.P. Fedchenko, M.S. Lockard, T.H. Pang,
D.T. That, Selective deposition modeling method and apparatus for forming
three-dimensional objects and supports (US patent 6,193,923), 2001.

[17] A.D. Castiaux, E.A. Hayter, M.E. Bunn, S.R. Martin, D.M. Spence, PolyJet 3D-
printed enclosed microfluidic channels without photocurable supports, Anal.
Chem. 91 (10) (2019) 6910–6917.

[18] A. Hosny, S.J. Keating, J.D. Dilley, B. Ripley, T. Kelil, S. Pieper, D. Kolb, C.
Bader, A.-M. Pobloth, M. Griffin, R. Nezafat, G. Duda, E.A. Chiocca, J.R. Stone,
J.S. Michaelson, M.N. Dean, N. Oxman, J.C. Weaver, From improved diagnostics
to presurgical planning: High-resolution functionally graded multimaterial 3D
printing of biomedical tomographic data sets, 3D Print. Addit. Manuf. 5 (2)
(2018) 103–113.

[19] R. Worsley, L. Pimpolari, D. McManus, N. Ge, R. Ionescu, J.A. Wittkopf, A.
Alieva, G. Basso, M. Macucci, G. Iannaccone, et al., All-2D material inkjet-printed
capacitors: toward fully printed integrated circuits, Acs Nano 13 (1) (2018)
54–60.

[20] T. Carey, S. Cacovich, G. Divitini, J. Ren, A. Mansouri, J.M. Kim, C. Wang, C.
Ducati, R. Sordan, F. Torrisi, Fully inkjet-printed two-dimensional material field-
effect heterojunctions for wearable and textile electronics, Nature Commun. 8
(1) (2017) 1202.

[21] T. Pinto, C. Chen, C. Pinger, X. Tan, 3D-printed liquid metal-based stretchable
conductors and pressure sensors, Smart Mater. Struct. 30 (9) (2021) 095005.

[22] R. MacCurdy, R. Katzschmann, Y. Kim, D. Rus, Printable hydraulics: A method
for fabricating robots by 3D co-printing solids and liquids, IEEE Int. Conf. Robot.
Autom. (ICRA) 2 (2016).

[23] Y. Wei, Y. Chen, Y. Yang, Y. Li, Novel design and 3-D printing of nonassembly
controllable pneumatic robots, IEEE/ASME Trans. Mechatronics 21 (2) (2016)
649–659.

[24] S. Coros, B. Thomaszewski, G. Noris, S. Sueda, M. Forberg, R.W. Sumner, W.
Matusik, B. Bickel, Computational design of mechanical characters, ACM Trans.
Graph. 32 (4) (2013) 83.
19
[25] D. Chen, X. Zheng, Multi-material additive manufacturing of metamaterials with
giant, tailorable negative Poisson’s ratios, Sci. Rep. 8 (1) (2018) 1–8.

[26] M.J. Mirzaali, A. Caracciolo, H. Pahlavani, S. Janbaz, L. Vergani, A. Zadpoor,
Multi-material 3D printed mechanical metamaterials: Rational design of elastic
properties through spatial distribution of hard and soft phases, Appl. Phys. Lett.
113 (24) (2018).

[27] A. Ion, J. Frohnhofen, L. Wall, R. Kovacs, M. Alistar, J. Lindsay, P. Lopes, H.-T.
Chen, P. Baudisch, Metamaterial mechanisms, in: Proceedings of the 29th Annual
Symposium on User Interface Software and Technology, 2016, pp. 529–539.

[28] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C. Wang,
Y.C. Shin, S. Zhang, P.D. Zavattieri, The status, challenges, and future of additive
manufacturing in engineering, Comput. Aided Des. 69 (2015) 65–89.

[29] C. Zhang, F. Chen, Z. Huang, M. Jia, G. Chen, Y. Ye, Y. Lin, W. Liu, B. Chen, Q.
Shen, et al., Additive manufacturing of functionally graded materials: A review,
Mater. Sci. Eng. A 764 (2019) 138209.

[30] M. Gao, L. Li, Y. Song, Inkjet printing wearable electronic devices, J. Mater.
Chem. C 5 (12) (2017) 2971–2993.

[31] N. Munasinghe, M. Woods, L. Miles, G. Paul, 3-D printed strain sensor for struc-
tural health monitoring, in: 2019 IEEE International Conference on Cybernetics
and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and
Mechatronics (RAM), 2019, pp. 275–280.

[32] J. Persad, S. Rocke, A survey of 3D printing technologies as applied to printed
electronics, IEEE Access 10 (2022) 27289–27319.

[33] B. Hayes, T. Hainsworth, R. MacCurdy, Liquid-solid co-printing of multi-material
3D fluidic devices via material jetting, Addit. Manuf. (2022) 102785.

[34] R. Maccurdy, R. Katzschmann, Y. Kim, D. Rus, Printable hydraulics: A method
for fabricating robots by 3D co-printing solids and liquids, IEEE Int. Conf. Robot.
Autom. (ICRA) (2016).

[35] R. MacCurdy, J. Lipton, S. Li, D. Rus, Printable programmable viscoelastic
materials for robots, in: 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2016, pp. 2628–2635.

[36] T.K. Brown-Moore, S. Balaji, T. Williams, J. Lipton, Fabrication of liquid-filled
voronoi foams for impact absorption using material jetting technology, in: 2022
International Solid Freeform Fabrication Symposium, 2022.

[37] N.M. Jacobson, L. Smith, J. Brusilovsky, E. Carrera, H. McClain, R. MacCurdy,
Voxel printing anatomy: Design and fabrication of realistic, presurgical planning
models through bitmap printing, JoVE (J. Vis. Exp.) (2022).

[38] N. Jacobson, E. Carerra, L. Smith, L. Browne, N. Stence, A. Sheridan, R.
MacCurdy, Defining soft tissue: Bitmap printing of soft tissue for surgical
planning, 3D Print. Addit. Manuf. 9 (6) (2022) 461–472.

[39] N. Jacobson, H. McClain, M. New, Digital workflow for high-risk, low-volume
procedure simulation, J. Biomed. Res. 4 (1) (2023) 1–7.

[40] E.L. Doubrovski, E.Y. Tsai, D. Dikovsky, J.M. Geraedts, H. Herr, N. Oxman,
Voxel-based fabrication through material property mapping: A design method
for bitmap printing, Comput. Aided Des. 60 (2015) 3–13.

[41] P. Lienhardt, Topological models for boundary representation: a comparison with
n-dimensional generalized maps, Comput. Aided Des. 23 (1991) 59–82.

[42] S. Lefebvre, Icesl: A GPU accelerated CSG modeler and slicer, in: AEFA’13, 18th
European Forum on Additive Manufacturing, 2013.

[43] S.D. Roth, Ray casting for modeling solids, Comput. Graph. Image Process. 18
(2) (1982) 109–144.

[44] Q. Li, Q. Hong, Q. Qi, X. Ma, X. Han, J. Tian, Towards additive manufacturing
oriented geometric modeling using implicit functions, Vis. Comput. Ind. Biomed.
Art 1 (1) (2018) 1–16.

[45] S. Hasanov, A. Gupta, A. Nasirov, I. Fidan, Mechanical characterization of
functionally graded materials produced by the fused filament fabrication process,
J. Manuf. Process. 58 (2020) 923–935.

[46] A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, Function representation in
geometric modeling: concepts, implementation and applications, Vis. Comput.
11 (1995) 429–446.

[47] A. Penev, F-rep designer 2.0–everything is a code, Int. J. Comput. Sci. Issues
(IJCSI) 15 (4) (2018) 7–13.

[48] A. Pasko, O. Fryazinov, T. Vilbrandt, P.-A. Fayolle, V. Adzhiev, Procedural
function-based modelling of volumetric microstructures, Graph. Models 73 (5)
(2011) 165–181.

[49] A. Pasko, V. Adzhiev, B. Schmitt, C. Schlick, Constructive hypervolume modeling,
Graph. Models 63 (6) (2001) 413–442.

[50] K. Museth, VDB: High-resolution sparse volumes with dynamic topology, ACM
Trans. Graph. 32 (3) (2013).

[51] T. McReynolds, D. Blythe, Advanced Graphics Programming using OpenGL,
Elsevier, 2005.

[52] K. Museth, Nanovdb: A GPU-friendly and portable VDB data structure for real-
time rendering and simulation, in: ACM SIGGRAPH 2021 Talks, 2021, pp.
1–2.

[53] P.-A. Fayolle, A. Pasko, B. Schmitt, N. Mirenkov, Constructive heterogeneous
object modeling using signed approximate real distance functions, J. Comput.
Inf. Sci. Eng. 6 (3) (2005) 221–229.

[54] G. Wyvill, C. McPheeters, B. Wyvill, Soft objects, in: Advanced Computer
Graphics: Proceedings of Computer Graphics Tokyo’86, Springer, 1986, pp.
113–128.

http://refhub.elsevier.com/S2214-8604(23)00525-0/sb1
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb1
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb1
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb1
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb1
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb2
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb2
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb2
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb3
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb3
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb3
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb3
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb3
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb3
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb3
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb4
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb4
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb4
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb4
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb4
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb5
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb5
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb5
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb5
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb5
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb5
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb5
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb6
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb6
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb6
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb6
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb6
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb6
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb6
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb7
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb7
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb7
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb7
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb7
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb7
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb7
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb8
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb8
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb8
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb10
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb10
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb10
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb11
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb11
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb11
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb11
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb11
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb12
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb12
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb12
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb12
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb12
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb12
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb12
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb13
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb13
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb13
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb13
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb13
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb14
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb14
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb14
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb14
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb14
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb14
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb14
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb15
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb15
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb15
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb16
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb16
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb16
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb16
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb16
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb16
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb16
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb17
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb17
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb17
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb17
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb17
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb18
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb18
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb18
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb18
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb18
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb18
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb18
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb18
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb18
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb18
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb18
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb19
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb19
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb19
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb19
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb19
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb19
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb19
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb20
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb20
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb20
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb20
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb20
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb20
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb20
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb21
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb21
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb21
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb22
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb22
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb22
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb22
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb22
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb23
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb23
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb23
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb23
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb23
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb24
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb24
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb24
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb24
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb24
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb25
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb25
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb25
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb26
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb26
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb26
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb26
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb26
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb26
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb26
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb27
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb27
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb27
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb27
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb27
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb28
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb28
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb28
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb28
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb28
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb29
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb29
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb29
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb29
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb29
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb30
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb30
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb30
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb31
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb31
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb31
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb31
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb31
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb31
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb31
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb32
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb32
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb32
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb33
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb33
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb33
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb34
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb34
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb34
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb34
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb34
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb35
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb35
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb35
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb35
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb35
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb36
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb36
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb36
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb36
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb36
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb37
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb37
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb37
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb37
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb37
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb38
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb38
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb38
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb38
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb38
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb39
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb39
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb39
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb40
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb40
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb40
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb40
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb40
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb41
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb41
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb41
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb42
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb42
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb42
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb43
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb43
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb43
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb44
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb44
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb44
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb44
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb44
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb45
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb45
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb45
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb45
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb45
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb46
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb46
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb46
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb46
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb46
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb47
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb47
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb47
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb48
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb48
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb48
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb48
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb48
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb49
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb49
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb49
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb50
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb50
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb50
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb51
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb51
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb51
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb52
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb52
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb52
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb52
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb52
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb53
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb53
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb53
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb53
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb53
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb54
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb54
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb54
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb54
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb54

Additive Manufacturing 79 (2024) 103912C. Wade et al.
[55] Tigges, Wyvill, A field interpolated texture mapping algorithm for skeletal
implicit surfaces, 1999 Proc. Comput. Graph. Int. (1999) 25–32.

[56] B. Wyvill, A. Guy, E. Galin, Extending the csg tree. warping, blending and
boolean operations in an implicit surface modeling system, in: Computer
Graphics Forum, vol. 18, Wiley Online Library, 1999, pp. 149–158.

[57] C. Brauer, D.M. Aukes, Automated generation of multi-material structures using
the VoxelFuse framework, in: Proceedings - SCF 2020: ACM Symposium on
Computational Fabrication, Association for Computing Machinery, Inc, 2020.

[58] C. Brauer, D.M. Aukes, Voxel-based CAD framework for planning functionally
graded and multi-step rapid fabrication processes, in: Proceedings of the ASME
Design Engineering Technical Conference, vol. 2A-2019, American Society of
Mechanical Engineers Digital Collection, 2019.

[59] J. Hiller, H. Lipson, Dynamic simulation of soft multimaterial 3d-printed objects,
Soft Robot. 1 (1) (2014) 88–101.

[60] K. Vidimče, S.P. Wang, J. Ragan-Kelley, W. Matusik, OpenFab: A programmable
pipeline for multi-material fabrication, ACM Trans. Graph. 32 (2013).

[61] K. Vidimče, A. Kaspar, Y. Wang, W. Matusik, Foundry: Hierarchical mate-
rial design for multi-material fabricationdoubrovski2015voxel, in: UIST 2016
- Proceedings of the 29th Annual Symposium on User Interface Software and
Technology, Association for Computing Machinery, Inc, 2016.

[62] T.H. Luu, C. Altenhofen, A. Stork, D. Fellner, GraMMaCAD: Interactively defining
spatially varying FGMs on brep CAD models, in: International Design Engi-
neering Technical Conferences and Computers and Information in Engineering
Conference, vol. 86212, American Society of Mechanical Engineers, 2022,
V002T02A014.

[63] S. Hasanov, S. Alkunte, M. Rajeshirke, A. Gupta, O. Huseynov, I. Fidan, F. Alifui-
Segbaya, A. Rennie, Review on additive manufacturing of multi-material parts:
Progress and challenges, J. Manuf. Mater. Process. 6 (1) (2022).

[64] G. Elber, A review of a B-spline based volumetric representation: Design, analysis
and fabrication of porous and/or heterogeneous geometries, Comput. Aided Des.
(2023) 103587.

[65] Open Cascade SAS, Open Cascade Technology 7.7.0, 2023.
[66] A. Pasko, V. Adzhiev, R. Cartwright, E. Fausett, A. Ossipov, V. Savchenko, Hy-

perFun project: a framework for collaborative multidimensional F-rep modeling,
in: Eurographics/ACM SIGGRAPH Workshop Implicit Surfaces’ 99, Workshop
Implicit Surfaces 1999, 1999, pp. 59–69.

[67] M. Kintel, Openscad - the programmers solid 3D CAD modeller, 2010.
[68] C. Brauer, D. Aukes, Applying graded material transitions with low-cost additive

manufacturing, Rapid Prototyp. J. 29 (2) (2023) 378–392.
[69] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective

genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.
[70] A. Partow, C++ Mathematical Expression Library (exprtk).
[71] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
20
[72] V. Jampani, M. Kiefel, P.V. Gehler, Learning sparse high dimensional filters:
Image filtering, dense crfs and bilateral neural networks, in: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[73] A. Roschli, A. Messing, M. Borish, B.K. Post, L.J. Love, ORNL slicer 2: a novel
approach for additive manufacturing tool path planning, in: 2017 International
Solid Freeform Fabrication Symposium, University of Texas at Austin, 2017.

[74] M. Smith, ABAQUS/Standard User’s Manual, Version 6.9, Dassault Systèmes
Simulia Corp, United States, 2009.

[75] C. Shannon, Communication in the presence of noise, Proc. IRE 37 (1) (1949)
10–21.

[76] E.W. Dijkstra, ALGOL-60 Translation, Mathematisch Centrum, 1961.
[77] S. Kim, An integrated design approach for infill patterning of fused deposition

modeling and its application to an airfoil, Tech. rep., Oak Ridge National
Lab.(ORNL), Oak Ridge, TN (United States), 2017.

[78] S. Kim, G. Dreifus, B. Beard, A. Glick, A. Messing, A.A. Hassen, J. Lindahl, P.
Liu, T. Smith, J. Failla, et al., Graded infill structure of wind turbine blade core
accounting for internal stress in big area additive manufacturing, in: Proceedings
of the CAMX Composite and Advanced Materials Expo, Dallas, TX, USA, 2018,
pp. 15–18.

[79] A. Wakita, A. Nakano, N. Kobayashi, Programmable blobs: a rheologic interface
for organic shape design, in: Proceedings of the Fifth International Conference
on Tangible, Embedded, and Embodied Interaction, 2010, pp. 273–276.

[80] J. Tournois, N. Faraj, J.-M. Thiery, T. Boubekeur, Tetrahedral remeshing, in:
CGAL User and Reference Manual, 5.5.2, CGAL Editorial Board, 2023.

[81] T. Duff, Interval arithmetic recursive subdivision for implicit functions and
constructive solid geometry, ACM SIGGRAPH Comput. Graph. 26 (2) (1992)
131–138.

[82] M.J. Keeter, Massively parallel rendering of complex closed-form implicit
surfaces, ACM Trans. Graph. 39 (4) (2020) 141.

[83] S.K. Adapa, et al., Design and fabrication of internal mixer and filament extruder
for extraction of hybrid filament composite for FDM applications, Int. J. Interact.
Des. Manuf. (IJIDeM) (2023) 1–14.

[84] J.T. Green, I.A. Rybak, J.J. Slager, M. Lopez, Z. Chanoi, C.M. Stewart, R.V.
Gonzalez, Local composition control using an active-mixing hotend in fused
filament fabrication, Addit. Manuf. Lett. (2023) 100177.

[85] Z.C. Kennedy, J.F. Christ, Printing polymer blends through in situ active mixing
during fused filament fabrication, Addit. Manuf. 36 (2020) 101233.

[86] D. Feenstra, R. Banerjee, H. Fraser, A. Huang, A. Molotnikov, N. Birbilis, Critical
review of the state of the art in multi-material fabrication via directed energy
deposition, Curr. Opin. Solid State Mater. Sci. 25 (4) (2021) 100924.

[87] R. Zhao, C. Chen, W. Wang, T. Cao, S. Shuai, S. Xu, T. Hu, H. Liao, J. Wang,
Z. Ren, On the role of volumetric energy density in the microstructure and
mechanical properties of laser powder bed fusion Ti-6Al-4V alloy, Addit. Manuf.
51 (2022) 102605.

http://refhub.elsevier.com/S2214-8604(23)00525-0/sb55
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb55
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb55
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb56
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb56
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb56
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb56
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb56
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb57
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb57
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb57
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb57
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb57
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb58
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb58
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb58
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb58
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb58
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb58
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb58
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb59
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb59
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb59
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb60
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb60
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb60
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb61
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb61
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb61
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb61
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb61
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb61
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb61
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb62
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb62
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb62
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb62
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb62
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb62
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb62
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb62
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb62
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb63
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb63
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb63
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb63
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb63
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb64
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb64
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb64
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb64
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb64
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb65
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb66
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb66
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb66
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb66
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb66
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb66
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb66
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb67
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb68
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb68
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb68
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb69
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb69
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb69
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb71
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb71
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb71
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb72
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb72
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb72
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb72
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb72
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb73
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb73
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb73
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb73
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb73
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb74
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb74
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb74
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb75
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb75
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb75
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb76
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb77
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb77
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb77
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb77
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb77
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb78
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb78
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb78
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb78
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb78
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb78
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb78
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb78
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb78
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb79
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb79
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb79
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb79
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb79
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb80
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb80
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb80
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb81
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb81
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb81
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb81
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb81
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb82
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb82
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb82
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb83
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb83
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb83
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb83
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb83
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb84
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb84
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb84
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb84
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb84
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb85
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb85
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb85
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb86
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb86
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb86
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb86
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb86
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb87
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb87
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb87
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb87
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb87
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb87
http://refhub.elsevier.com/S2214-8604(23)00525-0/sb87

	OpenVCAD: An open source volumetric multi-material geometry compiler
	Introduction
	Related Work
	Multi-material Additive Manufacturing Technology
	Applications of Multi-material Additive Manufacturing
	Homogeneous Multi-material Design
	Functional Geometry Representations

	Heterogeneous Multi-material Design
	Heterogeneous Design for Graphics and Rendering
	Heterogeneous Design Methods for AM
	Current Challenges for Heterogeneous AM Design

	Geometry Compilers

	Volumetric Multi-Material Design for AM
	Tree Definition
	Leaf Nodes: Geometric Primitives
	Leaf Nodes: External Geometry
	Composite Nodes
	Multi-Material Nodes: Functional Grading
	Multi-Material Nodes: Convolution

	Multi-Material Compiler
	Affine Invariance

	Performance Analysis
	Case Studies
	Functionally Graded Wing
	Multi-Material Organic Lattices

	Bottlenecks and Areas for Improvements
	Applications of OpenVCAD to Non-Inkjet Systems
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data and material availability
	
	Appendix. VCAD Scripts for Examples
	References

