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Abstract

Numerical modeling of soft matter has the potential to enable exploration of the soft robotic field’s next
frontier: human/machine cooperative design. However, access to material models suitable for predicting the
behavior of soft matter is limited, and analysts typically conduct their own mechanical characterization on every
new material they work with. In this work we present detailed mechanical characterization of 14 3D-printable
soft materials suitable for fabricating soft robots. To allow the extension of this work by other researchers, our
test procedures, raw data, constitutive model coefficients, and code used for curve fitting is freely available at

www.SoRoForge.com.
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Introduction

UNLIKE TRADITIONAL ENGINEERING DESIGNS, soft robots
routinely undergo large deformations,’ and the mechanical
response of their constituent materials is not modeled accu-
rately by a linear stress—strain relationship. Several dozen®
hyperelasticity models of varied mathematical form and
complexity have been proposed to describe the underlying
behavior of these rubbery materials. In this work, we present
hyperelasticity models for 14 popular 3D-printable soft ma-
terials, and detail the “‘recipe’’ (fabrication, testing, and data
processing steps) used to derive them.

The 3D-printable materials suitable for soft robots are
rapidly becoming more popular, allowing designers to
overcome limitations of traditional fabrication methods and
reduce manual assembly steps. While standardization of
material models for commonly used castable silicone mate-
rials is underway,” limited progress has been made in char-
acterizing these 3D-printable materials. Recent efforts
underscore the importance of developing a unified database
of material models as well as standard practices for experi-
mental material characterization. Marechal et al. investigated
the behavior of 17 commercially available nonprintable
elastomers and supply raw data as well as model coefficients
for common incompressible hyperelasticity models.’ Azmi
et al. highlight the need for standardization in test sample
geometry and procedures by comparing ASTM standards in
the uniaxial tensile testing of several silicone rubbers,

showing 50% disagreement between hyperelastic coeffi-
cients fit to data from each standard.*

Bortoli et al. have commercialized a fast and general curve
fitting code, Hyperfit, offering several fitting algorithms, 40
hyperelasticity models, and multicriteria optimization.?
Gorrisen et al. aggregate published material models for soft
robotic actuators in their broad survey of the field,' and note
the lack of standardization in material model selection across
the simulation results they review.

In addition to 12 standard thermoplastic polyurethane
(TPU) materials, we mechanically characterize two electri-
cally conductive materials, previously tested for their elec-
trical properties.” These enable the fabrication® and potential
integration’ of robust resistive strain sensors in soft robotic
assemblies.

Materials and Methods

Fabrication and test method

Samples were fabricated using a commodity fused filament
fabrication 3D printer (Prusa MK3s, Prusa Research) fitted
with an upgraded direct drive filament extruder designed for
higher torque (Bondtech, AB) and a nickel-coated brass
nozzle with 0.6 mm orifice diameter (Bondtech, AB). All
samples were printed using identical gcode, generated using
the open-source slicing program PrusaSlicer, with 100%
infill and linear extrusion rate of 30 mm/s.
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To quantify the dimensional accuracy of the fabricated
samples, we compare the mass of each sample to that of a
theoretical, dimensionally exact sample. Samples exhibit low
variability in mass inside each material group, but clear
variability across material groups (Fig. 1, right). While softer
filaments appear more likely to underextrude, designers can
compensate by adjusting the ‘“‘extrusion multiplier’”” param-
eter available in slicing software.

Test specimens were designed and tested according to
ASTM standard D412 (Die C, 33x6Xx 1.6 mm test region),
Test Methods for Vulcanized Rubber and Thermoplastic
Elastomers—Tension.® Samples were stretched to failure or
600% engineering strain, dictated by the maximum travel
available on the load frame used for this characterization
(810ES5 All-Electric Dynamic Test Machine, Test Resources).
Testing was performed on eight samples of each material, di-
vided into two groups (A and B), with infill direction-oriented
45° and 90° offset from the pull direction, respectively.

Hyperelasticity model selection

Empirical data show high repeatability across fabricated
samples, indicating consistency in fabrication and test exe-
cution. We quantify this repeatability by computing the co-
efficient of variation (CV) inside each set of test data, and
report mean CV below 5% for all material datasets (Table 1).
We convert extension distance and tensile force data mea-
sured during testing into stress—stretch quantities by ac-
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counting for as-fabricated cross-sectional area and test region
length.

We fit test data to first-, second-, and third-order Ogden
model, which quantifies the strain energy density W of a
material point as a function of its principal stretches /;:

N
w= Y ) (A7 + 25"+ 25" =3) (1)
p=1 %p

The Ogden model is a general and highly accurate® model
for hygperelastic solids, is applicable for strains beyond
400%,” and can be reduced to the simpler neo-Hookean or
Mooney-Rivlin models with specific choices of N and .

Taking the derivative 27"‘]’ and applying isotropic in-
compressibility and uniaxial strain state assumptions, we
rearrange Equation (1) to isolate principal Cauchy stress 71
as a function of principal stretch 4, producing the equation we
utilize during curve fitting (although we plot against engi-
neering strain ¢ in Fig. 1 for visual purposes):

N
o=y Zﬂp(ia"’flfxlf“”/rl/z) )
p=1

Results

Curve fitting is performed on the mean stretch—true stress
response of each material to find values of the Ogden
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FIG. 1. Empirical stress—strain curves for 3D printable soft materials tested in uniaxial tension according to ASTM D412,
eight test samples per filament type. Circular marks indicate mean of empirical data, shaded region represents 2¢ (95%)
confidence bounds, and solid bold lines indicate best-fit third-order Ogden hyperelasticity model. Upper left inset shows
infill orientation for samples, which were tested to failure, 550%, or 600% strain depending on material type. Right subplot
shows percent error in mass of as-fabricated samples compared with a geometrically perfect sample, displayed in boxplot
form (shaded rectangle covers the 25th—75th percentile, horizontal line stretches between the extrema, and vertical line lies
at the mean). Softer filaments appear to be more prone to underextrusion, although multiple exceptions to this trend are
evident. For color representation of this figure, the reader is referred to the online version of this article.
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coefficients (u;, ®;), which minimize error between the em-
pirical curve and fit equation. We employ a general nonlinear
regression algorithm in the MATLAB (© MathWorks 2022)
function fitnlm() to search for optimal Ogden coefficients,
and quantify fit quality using the Standard Error of the
Estimate S*:

er‘l:l(yi _Sji)z
n—k—1

3

where n is the number of empirical datapoints, y; is em-
pirical data, y; is predicted (fit) data, and k is the number of
predictors (i.e., coefficients to be estimated during fit-
ting). Fitting is performed with Ogden order N =1, 2, 3 for
each filament, and Akaike Information Criterion® is
computed to quantify fit quality relative to model com-
plexity. Optimal Ogden parameters (Table 1) are ready for
implementation in any commercial or research (e.g., Fe-
Bio'®) numerical analysis code, allowing researchers to
analyze soft robot designs without performing their own
mechanical testing.

Conclusion

We present a database of 3D printable soft material mod-
els, lowering barriers to the wider adoption of simulation soft
robotics research. We describe sample fabrication, test pro-
cedures, and fitting procedures, adding to earlier work™ in
creating a standardized method for mechanical character-
ization of materials relevant to soft robotics.

We hope this work spurs adoption of standardized test
procedures and hyperelasticity models for common soft ro-
botic materials and shifts focus toward more specialized
characterization. In particular, some TPUs tested here exhibit
viscoelasticity that falls beyond the scope of this work, but is
vital to characterize for soft robotic applications operating in
high strain rate contexts. Additionally, further electrome-
chanical characterization of conductive filaments is needed.
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