arXiv:2509.15562v1 [cs.GR] 19 Sep 2025

Implicit Modeling for 3D-printed Multi-material Computational
Object Design via Python

Charles Wade Devon Beck Robert MacCurdy”
charles.wade@colorado.edu dbeck@draper.com maccurdy@colorado.edu
University of Colorado Boulder The Charles Stark Draper Laboratory, University of Colorado Boulder
Boulder, Colorado, USA Inc Boulder, Colorado, USA

Draper Scholars, The Charles Stark
Draper Laboratory, Inc
Cambridge, Massachusetts, USA

Cambridge, Massachusetts, USA

Python-based Multi-material
Volumetric Modeling

Multi-material Lattice Design

Abstract

This paper introduces open-source contributions designed to accel-
erate research in volumetric multi-material additive manufacturing
and metamaterial design. We present a flexible Python-based API
facilitating parametric expression of multi-material gradients, in-
tegration with external libraries, multi-material lattice structure
design, and interoperability with finite element modeling. Novel
implicit multi-material modeling techniques enable detailed spatial
grading at multiple scales within lattice structures. Additionally,
our framework integrates with finite element analysis, offering
predictive simulations via adaptive mesh sizing and direct import
of simulation results to guide material distributions. Practical case
studies illustrate the utility of these contributions, including func-
tionally graded lattices, algorithmically generated structures, and
simulation-informed designs, exemplified by a multi-material bicy-
cle seat optimized for mechanical performance and rider comfort.
Finally, we introduce a mesh export strategy compatible with stan-
dard slicing software, significantly broadening the accessibility and
adoption of functionality graded computational design methodolo-
gies for multi-material fabrication.

CCS Concepts

+ Computing methodologies — Volumetric models; Mesh ge-
ometry models; « Applied computing — Computer-aided man-
ufacturing; Computer-aided design.

“Corresponding Author

Simulation-Driven
Multi-material Gradients

Export for Fused Filament Fabrication
and Inkjet 3D Printing

Keywords

computer-aided design, additive manufacturing, volumetric design,
functionally graded materials, slicing, simulation

1 Introduction

The advancement of additive manufacturing (AM) technologies
has enabled the creation of geometries and material combinations
previously considered impractical or impossible. Particularly, multi-
material AM systems now offer high-resolution control of spatially
varying materials throughout printed objects. Despite these hard-
ware advancements, computational design tools for AM have not
adequately evolved to harness these capabilities. Existing CAD
methodologies predominantly use boundary surface representa-
tions. This approach is suited best for homogeneous or discrete
transitions between materials, limiting design complexity. Conse-
quently, engineers and designers were constrained by CAD tools
that do not readily support precise, volumetric distributions of
multiple materials within complex geometries.

Volumetric multi-material design promises significant benefits
across a wide range of applications, including compliant mech-
anisms and metamaterials. Unlike traditional homogeneous or
discretely heterogeneous designs, functionally graded materials
(FGMs) exhibit continuous spatial variations in composition, en-
abling tailored mechanical properties and performance optimiza-
tion. The capability to design with continuously varying properties
is increasingly critical for applications that demand spatially pre-
cise performance tuning, such as biomedical implants, customized
ergonomics, and structural optimization.

OpenVCAD, an open-source volumetric design compiler, ad-
dresses these design limitations by offering implicit representations

https://orcid.org/0000-0002-6056-7717
https://orcid.org/0000-0001-5010-579X
https://orcid.org/0000-0002-1726-151X
https://arxiv.org/abs/2509.15562v1

capable of expressing both geometry and spatially varying material
distributions. However, OpenVCAD exhibits several key limita-
tions: it is targeted at primarily Inkjet-based AM systems, relies on
a custom scripting language with limited expressiveness, and lacks
integration with simulation methods for performance prediction.
These limitations restrict broader adoption and hindered practical
applications.

In this paper, we present novel methodologies as open source
contributions to the OpenVCAD framework. These methodologies
significantly expand capabilities and applicability, addressing the
shortcomings inherent in the current implementation. First, we
introduce a substantial shift from a domain-specific scripting lan-
guage to a flexible Python-based API. This transition facilitates
greater parametric complexity, enabling designers to incorporate
variables, loops, conditional logic, and external libraries, thus sig-
nificantly enhancing design expressiveness and versatility.

Additionally, we introduce novel methods enabling the implicit
design of multi-material lattice structures with spatially varying
material properties. We demonstrate the efficacy of this approach
through printed artifacts integrating compliant (soft) and stiff (rigid)
materials within single lattice structures. Extending beyond static
design, we provide a novel workflow for exporting OpenVCAD
models for finite element analysis (FEA) simulation in ABAQUS,
allowing prediction and validation of mechanical performance prior
to fabrication. Through side-by-side comparisons between simu-
lated and physical lattice structures, we demonstrate practicality of
our approach.

Furthermore, we propose a novel methodology for importing
FEA simulation results back into OpenVCAD, facilitating automated
material grading based on simulation results. We illustrate this
capability using a practical application: a functionally graded 3D-
printed bicycle seat. By mapping simulated deformation from rider
loads directly into spatial gradients of soft and rigid materials, we
demonstrate a streamlined workflow from simulation-informed
design to fabrication with targeted mechanical responses. This
approach enables precise tailoring of compliance and performance
characteristics.

Lastly, we introduce a mesh-based export strategy compatible
with standard slicing software such as PrusaSlicer [Prusa Research
a.s. 2025]. This method allows OpenVCAD designs, previously con-
fined largely to Inkjet systems, to be realized using multi-material
material extrusion workflows. Using our bicycle seat design, we
demonstrate gradient-derived assignment of variable infill densities,
optimizing mechanical performance to mitigate deformation.

Overall, these advancements collectively represent significant
steps toward an integrated, simulation-informed, and broadly ap-
plicable design framework for volumetric multi-material additive
manufacturing. Through enhanced scripting capabilities, compre-
hensive simulation integration, and expanded fabrication compati-
bility, we provide a robust and flexible method for researchers to use
to investigate advanced multi-material 3D printing applications.

2 Related Work

While recent advancements in multi-material additive manufac-
turing have enabled increasingly complex fabrication capabilities,
design tools have struggled to keep pace. A wide range of design

Wade et al.

frameworks have been proposed to support multi-material material
modeling, each offering different trade-offs in representation fi-
delity, scalability, and compatibility with manufacturing workflows.
In this section, we review prior work across five main categories.
We begin with homogeneous multi-material design methods, which
model discrete material regions using boundary representations.
We then examine voxel-based approaches that offer direct volumet-
ric material control, followed by non-voxel volumetric methods
that aim to improve efficiency and expressiveness. We next summa-
rize the contributions and limitations of OpenVCAD, an implicit
modeling framework tailored for multi-material design. Finally, we
conclude with a discussion of programming-based CAD systems
that motivate our move toward a general-purpose, scriptable design
interface.

2.1 Homogeneous Multi-material Design

Historically, the most prevalent approach for multi-material ad-
ditive manufacturing involves representing designs as multiple
discrete solids, each with homogeneous material compositions as-
signed individually. This methodology aligns closely with conven-
tional geometric representations employed in widely-used CAD
systems such as SolidWorks and Fusion360, which used construc-
tive solid geometry (CSG) and boundary representation (b-rep) to
define and visualize objects [Autodesk Inc. 2025; Dassault Systémes
SOLIDWORKS Corp. 2024]. Boundary representations partition
surfaces into cells composed of vertices, edges, and faces, encap-
sulating both geometric and topological details [Lienhardt 1991].
Similarly, CSG methods describe solids through Boolean combina-
tions of primitive shapes defined primarily by their surfaces and
were originally developed for rendering applications [Roth 1982].

Despite their effectiveness in visualizing discrete, solid mod-
els, homogeneous boundary-based representations struggle signifi-
cantly when expressing functionally graded materials. Representing
continuously varying material distributions with a boundary repre-
sentation requires segmentation into distinct volumes, each with
independent boundary definitions. When capturing material gra-
dients, the complexity of managing numerous boundary surfaces
escalates rapidly, increasing computational demands for slicing and
toolpath generation. Moreover, threshold-based methods inherently
introduce abrupt material transitions, potentially creating struc-
tural weaknesses at these interfaces [Hasanov et al. 2020]. Thus,
traditional homogeneous multi-material design approaches are fun-
damentally limited for advanced additive manufacturing processes
requiring precise volumetric material control.

2.2 Voxel-Based Methods

Voxel-based representations provide an intuitive and direct method
for capturing heterogeneous and graded material designs, com-
monly used in graphics and rendering applications such as medical
imaging, fluid simulation, and volumetric rendering of phenom-
ena like clouds or fire [Museth 2013]. Typically, these methods
store volumetric data on material concentration, opacity, or density
within discretized voxel grids, which can be efficiently visualized
using texture slicing or ray-tracing techniques [McReynolds and
Blythe 2005]. However, these standard voxel representations face

Implicit Modeling for 3D-printed Multi-material Computational Object Design via Python

significant computational challenges in additive manufacturing con-
texts, particularly for high-resolution inkjet and polyjet 3D printing
systems, whose build volumes may consist of billions of voxels.

To mitigate computational limitations, Museth introduced Open-
VDB, a sparse voxel data structure aimed at significantly reduc-
ing memory footprints for volumetric data by efficiently storing
sparse regions [Museth 2013]. OpenVDB offers various tools for
voxel-based modeling, including Boolean operations and affine
transformations. Building on this, NanoVDB provides a GPU-native
implementation, enhancing performance through parallel process-
ing capabilities [Museth 2021]. Despite these advancements, both
OpenVDB and NanoVDB are primarily tailored for rendering ap-
plications. They lack specialized functionalities needed to convert
sparse voxel structures into manufacturable formats suitable for
additive manufacturing processes. Additionally, as data structures
rather than complete design frameworks, they lack user-friendly
interfaces for engineers aiming to utilize voxel-based design meth-
ods directly. PicoGK, an extension built upon OpenVDB, provides
a more complete workflow tailored specifically for engineering
design using voxels [Kayser and 71 2024]. However, despite employ-
ing voxel-based representations, PicoGK does not support multi-
material heterogeneous design, limiting its capability to represent
functional gradients effectively.

Similarly, Brauer and Aukes developed VoxelFuse, a voxel-based
CAD framework for multi-material additive manufacturing [Brauer
and Aukes 2019, 2020]. VoxelFuse leverages voxels to simultane-
ously define geometric and material information, offering capabil-
ities for voxelization, simulation, and integration with common
CAD software like OpenSCAD, SolidWorks, and Fusion360. The
simulation modules within VoxelFuse rely on voxel-specific frame-
works such as VoxCAD and Voxelyze to evaluate designs prior to
manufacturing [Hiller and Lipson 2014]. Nonetheless, VoxelFuse
shares similar scalability limitations inherent to voxel-grid rep-
resentations, as operations scale cubically with grid dimensions.
Consequently, it becomes computationally prohibitive for large-
volume and high-resolution printing processes.

2.3 Non-voxel Methods

In contrast to voxel-based representations, non-voxel approaches
represent heterogeneous material distributions without discretizing
the design domain, thereby improving computational efficiency.
However, these methods often lack the robust tooling, accessibility,
or direct applicability necessary for additive manufacturing.

Foundry and OpenFab exemplify non-voxel approaches for multi-
material design, emphasizing volumetric texture rendering and
color gradients [Vidimée et al. 2016, 2013]. OpenFab uses a two-
phase pipeline, beginning with boundary surface definitions and
subsequently applying volumetric textures and procedurally de-
fined "fablets" to create detailed material distributions. Foundry
similarly supports detailed texture synthesis and the creation of
alloyed or functionally graded materials, but relies on externally
defined geometries, limiting its integration with existing additive
manufacturing workflows.

GraMMaCAD provides another approach, enabling interactive
definition of material gradients on imported boundary-surface ge-
ometries [Hasanov et al. 2022; Luu et al. 2022]. While intuitive,

GraMMaCAD’s reliance on manual region selection limits its scal-
ability when designs contain numerous complex sub-regions, as
commonly found in advanced applications such as meta-materials.
Thus, methods offering native volumetric representations paired
with geometry definition in a programmatic way are preferred.

Elber et al. proposed using volumetric representations (V-reps)
based on B-splines, which naturally facilitate porous and hetero-
geneous designs [Elber 2023]. V-reps closely integrate geometric
modeling with finite element analysis, supporting advanced ap-
plications in manufacturing functionally graded materials. Their
methodology is implemented within the IRIT Modeling Environ-
ment, providing a specialized toolset for volumetric modeling.

Pasko et al’s Constructive hypervolume modeling, uses scalar
fields combined with geometric primitives within a hierarchical
constructive tree to efficiently represent heterogeneous materials
[Pasko et al. 2001]. Pasko et al.’s approach closely resembles implicit
modeling frameworks like BlobTrees, organizing primitives and ma-
terial attributes hierarchically [Fayolle et al. 2005; Tigges and Wyvill
1999; Wyvill et al. 1999, 1986]. While theoretically powerful for ren-
dering and volumetric texture definition, Pasko et al.’s methodology
lacks explicit procedures for translating implicit representations
into discretized formats required for additive manufacturing. Ad-
ditionally, it does not provide a direct method for representing
objects as volume fractions, limiting its immediate applicability in
multi-material 3D printing.

2.4 OpenVCAD: Implicit Representation for
Multi-Material AM

Wade et al. (2024) proposed OpenVCAD, an efficient implicit rep-
resentation specifically designed for expressing complex, multi-
material, and functionally graded objects in additive manufactur-
ing [Wade et al. 2024]. Presented for inkjet-based AM systems,
OpenVCAD addresses the inherent limitations of conventional
boundary-surface design methods, such as STL or 3MF files, which
inadequately represent volumetric material distributions due to
their reliance solely on discrete boundary surfaces. OpenVCAD
employs an implicit approach for both geometry and multi-material
composition. It defines objects using two functions: a signed dis-
tance function (geometry), and a collection of volume fraction func-
tions (multi-material distribution). OpenVCAD employs a tree-like
structure of nodes and operators that allow for importing or cre-
ating different geometries, performing CSG-like operations such
as boolean combinations, transformation, and multi-material func-
tions such as blending or grading. The implicit approach inherently
supports infinite resolution scaling and affine transformations, en-
abling detailed representation of both geometry and spatially vary-
ing material gradients without loss of precision.

Wade et al. (2025) proposed a subsequent extension of Open-
VCAD that demonstrated its applicability beyond voxel-based inkjet
systems, introducing gradient-aware slicing methods explicitly tar-
geting toolpath-based AM systems [Wade et al. 2025]. Their work
showed how implicit material distributions could inform toolpath

planning for multi-material and functionally graded prints, includ-
ing scenarios involving filament mixing hotends and temperature-
responsive foaming materials. This expansion highlighted Open-
VCAD’s versatility but was limited to a narrow selection of printing
processes supported by a custom slicer.

Despite these advancements, OpenVCAD presents several no-
table limitations. The framework uses a custom domain-specific
language for defining objects, limiting designers due to the ab-
sence of conventional programming constructs such as variables,
loops, and conditional statements. Likewise, although the Wade
el al. (2024) mentioned potential integration with finite element
analysis (FEA) simulations, comprehensive methods for exporting
OpenVCAD-defined objects to simulation-ready meshes and sub-
sequently re-importing FEA results are not robustly prescribed.
Finally, the implementation of lattice modeling within OpenVCAD
is limited to importing externally generated lattice meshes and
applying functional grading after. Our work expands by propos-
ing an implicit lattice design method that supports multi-material
functional grading within structures. This work will build on the
OpenVCAD framework, by presenting novel open-source contribu-
tors that address these limitations.

2.5 Programming Based Computer Aided
Design

Programming-based CAD methodologies have emerged as pow-
erful tools for parametric design, overcoming limitations inher-
ent to graphical user interface-driven CAD systems. In contrast
to interactive methods that often restrict parametric complexity,
programming-based CAD allows designers to define objects via
scripts written in specialized or general-purpose languages.

One of the earliest examples of such a system is Hyperfun, in-
troduced by Pasko et al. [Pasko et al. 1999], employing Functional
Representation (F-rep) coupled with a specialized programming
language. Hyperfun allowed designers to script parametric objects
using geometric and mathematical functions. Extensions of Hy-
perfun addressed heterogeneous material distribution and micro-
structure design for additive manufacturing [Fayolle et al. 2005;
Pasko et al. 2001, 2011]. However, these extensions remained pri-
marily theoretical or focused narrowly on rendering applications
rather than additive manufacturing workflows. Another widely
used programming-based CAD tool is OpenSCAD, which provides
a domain-specific scripting language to construct solid geometries
from boundary representations through Constructive Solid Geome-
try (CSG). In OpenSCAD, objects are defined by scripts, processed
as CSG trees composed of primitive shapes like cubes and spheres
combined through Boolean operations. Despite its robustness for
single-material designs, OpenSCAD is constrained by underlying
boundary-surface representations, making it impractical for defin-
ing intricate multi-material or functionally graded designs due to
prohibitively large file sizes and compilation times. Both Hyper-
fun and OpenSCAD employ their own domain specific program-
ming languages that are not directly compatible with each other, or
with external tools. This limits their applicability, especially with
complex computational design workflows that are data driven or
algorithmic.

Wade et al.

SolidPython serves as a Python-based wrapper for OpenSCAD
that provides users with improved compatibility and interoper-
ability with external Python libraries [Jones 2025]. By leveraging
the extensive ecosystem of scientific computing tools available in
Python, SolidPython enhances parametric modeling capabilities
significantly beyond those achievable with OpenSCAD’s domain-
specific language alone. However, is limited by the homogeneous
and surface based modeling employed by the OpenSCAD kernel.
Therefore it would be advantageous to have a CAD modeling frame-
work that offers both multi-material heterogeneous design capabil-
ities paired with an interface in a general purpose programming
language such as Python, which we introduce here.

Another widely used parametric design environment is Rhinoceros
3D (Rhino) combined with Grasshopper [Robert McNeel & Asso-
ciates 2023]. Rhino provides the underlying geometry kernel, while
Grasshopper adds a visual, programming-based interface for para-
metric design [Robert McNeel & Associates nd]. Grasshopper also
supports embedding Python scripts within its node-based work-
flows, enabling interoperability with advanced Python logic [Iran-
Nejad 2024]. However, these capabilities remain constrained within
the proprietary Rhino/Grasshopper ecosystem, limiting accessi-
bility in open-source workflows. A range of plugins extend their
functionality—for example, Crystallon for lattice design and Silk-
worm for G-code generation [Porterfield nd; ProjectSilkworm nd].
Despite their versatility, Rhino, Grasshopper, and associated plug-
ins rely on boundary surface representations and do not support
volumetric multi-material gradients, restricting their applicability
to multi-material 3D printing and design.

3 Methods and Case Studies

The Methods and Case Studies section presents our approach to pro-
grammable multi-material additive manufacturing. First, we detail
how transitioning from a custom domain-specific language (DSL)
to Python enables dynamic and expressive multi-material design
capabilities, supporting parametric, procedural, and algorithmic
workflows. This section includes illustrative examples demonstrat-
ing the integration of Python libraries for complex design patterns.
Subsequently, we explore advanced multi-material lattice genera-
tion methods, introducing novel primitives and hierarchical gra-
dient strategies for designing spatially graded lattices. Next, we
describe our methodology for exporting volumetric designs to finite
element analysis workflows, highlighting techniques for adaptive
meshing and simulation-informed multi-material design. Next, we
introduce a method for importing results directly into volumetric
multi-material designs informed by predictive simulations. We con-
clude by introducing a new mesh export module that segments
functionally graded designs into discrete triangulated meshes, en-
abling compatibility with existing slicer workflows. Each subsection
includes targeted case studies that exemplify practical applications
and validate the efficacy of the described methods.

3.1 Programming Multi-Material Designs in
Python
OpenVCAD was initially implemented around a custom domain-

specific language (DSL) designed to describe multi-material im-
plicit geometries. This early language focused purely on structural

Implicit Modeling for 3D-printed Multi-material Computational Object Design via Python

geometric description and lacked the expressiveness of a general-
purpose language. Notably, it did not support basic programming
constructs such as variables, loops, or conditionals. As a result, it
was difficult to create parametric or algorithmic designs within
the language itself. Designers are forced to use another language,
such as Python or Matlab, to generate OpenVCAD code indirectly
as text files, resulting in verbose workflows. The DSL lacked an
interchange standard, preventing interaction with external tooling,
data sources, or libraries, limiting its potential in automated design
workflows.

To address these limitations, we introduce pyvcad, a Python
library that enables dynamic and programmable construction of
OpenVCAD design trees. pyvcad provides a Python interface for
the volumetric design, rendering, and 3D printer compilers outlined
in existing OpenVCAD works [Wade et al. 2025, 2024]. Implemented
as bindings to the C++ based OpenVCAD library, pyvcad provides a
balance of efficiency and speed matched with an easy to use Python
interface. The library enables users to construct design graphs using
standard Python syntax and control flow, allowing for procedural
and data-driven design workflows. Crucially, this opens the door to
integration with scientific Python libraries such as NumPy, SciPy,
or Pandas, allowing OpenVCAD models to be informed by datasets,
simulation outputs, or optimization results.

While CAD libraries such as SolidPython, Trimesh, and pythonOCC
support parametric geometric modeling within Python, none of
these tools offer volumetric representations with continuous, multi-
material gradients. Moreover, they rely primarily on surface model-
ing paradigms and lack an implicit representation for both geome-
try and material distribution. Commercial tools such as nTopology
provide implicit geometry modeling but do not support implicit
multi-material definitions or open, programmable Python APIs
[nTopology Inc. 2025]. In contrast, pyvcad is an open-source frame-
work to support fully parametric, implicit, and functionally graded
multi-material volumetric design in Python. This Python interface
for OpenVCAD enables a broad set of new workflows, documented
in the case studies, including procedural spatially varying lattice
generation, stress-informed material mappings, and integration
with external libraries and algorithms.

3.1.1 Case Studies: Programmed Multi-material Design. We present
several example scripts that demonstrate the expressiveness and
flexibility of pyvcad. These case studies show how users can define
parametric models using standard programming techniques while
taking full advantage of OpenVCAD’s volumetric, multi-material
design infrastructure.

Code Listing 1 and Figure 1(a) show an example that is a minimal
"Hello World" script that generates a red rectangular prism centered
at the origin. The geometry is defined parametrically using Python
variables, and the visualization module pyvcadviz is used to ren-
der an interactive preview of the resulting volume. This example
demonstrates the simplicity of constructing design graphs using
parameterized inputs.

The second example, shown in Code Listing 2 and Figure 1(b-c)
introduces a functionally graded design, wherein a bar transitions
from red to blue along its length. This is achieved using the FGrade
node, which accepts a list of expressions representing the volume
fractions of materials, the corresponding materials, a mode selection

Listing 1 Example pyvcad Code for Rectangular Prism

import pyvcad as pv
materials = pv.default_materials()

Parameters

center_point = pv.Vec3(@, 0, 0) # At origin

dimensions = pv.Vec3(10,10,10) # In mm

Create a Rectangular Prism

root = pv.RectPrism(center_point, dimensions,
materials.id("red"))

flag (probabilistic mixing or thresholding), and the geometry to
which the gradient is applied. In this case, a gray rectangular prism
is created and then overridden with a red-to-blue gradient that
varies continuously along the x-axis.

To ensure the design scales appropriately with changes in geom-
etry size, the volume fraction expressions are defined as parame-
terized math strings using Python f-strings. This approach ensures
that gradient behavior remains consistent even if the length of the
bar is modified. While we support passing Python function pointers
instead of strings, we strongly encourage the use of math strings,
which are compiled into efficient abstract syntax trees using the
exprtk library [Partow [n.d.]]. This results in significantly better
runtime performance.

Listing 2 Example pyvcad Code for Graded Bar

import pyvcad as pv
materials = pv.default_materials()

Parameters

dimensions = pv.Vec3(15,10,5) # in mm

center = pv.Vec3(0,0,0)

Create a gray bar

bar = pv.RectPrism(center, dimensions, materials.id("gray"))

Apply a red to blue gradient

expressions = [f"x/{dimensions.x}+0.5",

f"-x/{dimensions.x}+0.5"]

materials = [materials.id("red"),
materials.id("blue")]

root = pv.FGrade(expressions, materials, True, bar)

(a) Example 1: Cube (b) Example 2: 15 mm bar

@

Figure 1: (a) Simple single material cube geometry created
from the script given in listing 1 (b) 15 mm and (c) 100 mm
bar with a red-to-blue gradient created using the script given
in listing 2.

(c) Example 2: 100 mm bar

The final example demonstrates a more complex use case involv-
ing a parametric color calibration sheet for inkjet 3D printers. The
code for this example is given in listing 3. The goal of this design is

to create a sheet composed of spatially varying mixtures of three
base materials. Each swatch in the grid corresponds to a unique
volume fraction of the three base materials, providing a known
color reference for printer calibration. The design is defined by a
reusable Python function that accepts parameters such as swatch
size, number of swatches in each dimension, thickness, and material
palette. Inside the function, a nested loop iterates over the grid and
assigns the appropriate volume fractions to each swatch using the
FGrade node. The resulting child nodes are then aggregated into a
single design using a Union node.

This example highlights several advanced features enabled by
pyvcad, including user-defined functions for encapsulating design
logic, dynamic control flow for scalable pattern generation, and
the ability to combine large numbers of primitives into a single
structure. Similarly, it demonstrates the multi-material parametric
functionally of pyvcad. Figures 2a—c show calibration sheets gen-
erated using different parameters, demonstrating the flexibility and
reusability of the parametric function.

Listing 3 pyvcad Code for Parametric Color Swatches

import pyvcad as pv
def create_calibration_sheet(s, count_x, count_y,
thickness, materials):
center the whole sheet around the origin
W = s * count_x
h = s * count_y
union = pv.Union()
for i in range(count_x):
for j in range(count_y):
compute volume fractions
c_frac = i / (count_x - 1)
m_frac = j / (count_y - 1)
w_frac = 1.0 - (c_frac + m_frac)
fractions = [f"{c_frac:.3f}",
f"{m_frac:.3f}",
f"{w_frac:.3f}"]
compute the center of this swatch
X_pos = -wW/2 + s/2 +1i*xs
y_pos = -h/2 + s/2 + j * s
center = pv.Vec3(x_pos, y_pos, 0)

size = pv.Vec3(s, s, thickness)
base = pv.RectPrism(center, size)
graded = pv.FGrade(fractions, materials,
True, base)
union.add_child(graded)
return union

Load some materials
mats = pv.default_materials()
root = create_calibration_sheet(

s = 25, # swatch size (mm)
count_x = 12, # subdivisions
count_y = 12,

thickness = 10, # mm plate thickness

materials = [mats.id("cyan"), mats.id("magenta"),
mats.id("white")]

Wade et al.

(a) 6 x 6 - CMW Sheet

(b) 12 x 12 - CMW Sheet

(c) 12 x 12 - RGB Sheet

Figure 2: Color calibration sheets created using pyvcad. (a)
6X6 grid using cyan, magenta, and white (CMW). (b) 12x12
CMW sheet. (c) 12x12 grid with red, green, and blue.

3.2 Multi-material Lattice Design

While basic lattice structures have been demonstrated with Open-
VCAD, robust methods for graph-based or strut-based lattices are
notably absent [Wade et al. 2024]. We introduce enhanced lattice
construction capabilities centered around a robust primitive for
individual lattice elements: a cylindrical strut defined by two end-
points and capped at both ends. These struts form the basic building
blocks of more complex lattice structures.

To construct complex unit cells, we introduce the GraphLattice
node, which accepts a list of vertex pairs to instantiate multiple
struts simultaneously and merges them into a single geometry via
a union operation. The GraphLattice node also supports a set
of predefined lattice types, including Body-Centered Cubic (BCC),
Face-Centered Cubic (FCC), and other standard topologies com-
monly used in additive manufacturing. An efficient design pattern
involves constructing a single unit cell using GraphLattice and
then replicating it periodically using the Tile node. The new Tile
node replicates both the geometry and material distribution of its
child node at a user-defined interval. To constrain the tiled lattice
to a specific region, an Intersection node can be used to clip
the repeated structure against a bounding volume. As shown in
Listing 4 and Figure 3, this approach enables the construction of a
tiled BCC lattice confined to a spherical domain.

Although it is possible to create an array of unit cells manually
by translating and unioning individual instances, this approach
is significantly less efficient. The Union-based method requires
duplicating each instance in memory, resulting in both increased
computational cost and memory usage. In contrast, the Tile node
retains a single copy of its child, leading to substantial performance
gains. However, a key limitation of the tiling approach is that it
assumes uniformity across the geometry and material composition
of the unit cell. In the following section, we describe strategies for
introducing functional grading into lattice structures.

In multi-material design contexts, engineers and designers of-
ten seek to locally tune material properties such as stiffness and
compliance to achieve specific mechanical responses. Our proposed
lattice construction framework supports this capability by enabling
functionally graded material distributions to be applied at multiple
hierarchical levels: globally across the entire lattice, per individual
unit cell, or at the level of each strut.

Figure 4 depicts these three gradient strategies. The global gra-
dient approach first constructs the entire lattice and subsequently
applies a spatially varying gradient across the whole structure. In
contrast, a local per-unit-cell gradient approach applies grading

Implicit Modeling for 3D-printed Multi-material Computational Object Design via Python

Listing 4 pyvcad Code Volume Filling Lattice

import pyvcad as pv
materials = pv.default_materials()

Parameters

sphere_radius = 10

cell_size = pv.Vec3(5,5,5)

cell_type = pv.LatticeType.BodyCenteredCubic
strut_dia = 0.35

Create a unit cell (BCC lattice)

cell_bcc = pv.GraphLattice(cell_type, cell_size, strut_dia,
materials.id("gray"))

Tile the unit cell to fill space

lattice_fill = pv.Tile(cell_bcc)

Create bounding geometry (sphere)

sphere = pv.Sphere(pv.Vec3(0,0,0), sphere_radius)

Intersection of lattice with bounding sphere

filled_sphere = pv.Intersection(False, [lattice_fill, spherel)

root = filled_sphere

Figure 3: The result of code listing 4 which tiles and intersec-
tions a body-centered cubic lattice withing a sphere.

directly at the unit cell level, allowing each cell to repeat its inter-
nal gradient throughout the tiled structure. Finally, the per-strut
grading method applies unique gradients to individual struts be-
fore combining them into a unit cell. This fine-grained control
enables engineering of local structural performance that we will
demonstrate in a future section on simulation.

3.2.1 Case Study: Algorithmic Multi-material Lattice Generation.
To showcase the versatility and scalability of our enhanced lattice
framework, we performed a complex case study involving the well-
known Stanford Bunny model. This example demonstrates the
integration of pyvcad with external Python libraries and algorithms
to produce intricate, multi-material lattice structures within an
arbitrary geometric domain. The algorithm used for generating this
lattice is detailed in Algorithm 1.

The resulting lattice structure comprises 3,289 uniquely graded
struts, each individually colored according to length-based material
blending between yellow and magenta. Figure 5(a) provides a ren-
dering of the design generated in OpenVCAD, Figure 5(b) depicts

Algorithm 1 Algorithm for creating an algorithmically generated
multi-material lattice

1: Import the Stanford Bunny as a mesh OpenVCAD node
2. Sample N random points inside the mesh
3: Using scipy, compute the Delaunay triangulation of the ran-
dom points
4: Extract a set of unique edges from the triangulation’s simplices
(tetrahedra)
: Prune any edges that intersect or exit the bunny mesh
: Determine the minimum and maximum edge lengths
: for all edges do
Create a strut node from edge endpoints
Compute the magenta-to-yellow color gradient based on
strut length:
shortest struts are pure yellow, longest are pure magenta,
intermediate lengths proportionally graded
10: Add graded strut to a union node
11: end for
12: Take the union between the generated lattice union node and
the bunny mesh node

© ® N @

the physical artifact fabricated on a Stratasys]J750 printer using
clear, magenta, and yellow materials, and Figure 5(c) highlights a
detailed view of the bunny’s facial region. The voxelization slicing
step required sampling 10 billion voxels, completing in 19 minutes
on a desktop equipped with a Ryzen 7 7700X processor. To further
assess the performance of our multi-material, functionally graded
strut-design method, Figure 6 illustrates the wall-clock time needed
to slice the bunny model as the number of struts increases. Notably,
despite a 1000-fold increase in strut count, export time increased
by only a factor of 3.4. This analysis demonstrates that our lattice
framework scales efficiently to support thousands of individually
graded elements while highlighting the practical benefits of inte-
grating OpenVCAD workflows with external Python libraries for
advanced multi-material volumetric design.

3.3 Export to Finite Element Analysis

In multi-material additive manufacturing workflows, predicting the
mechanical performance of functionally graded structures prior
to fabrication is crucial. This is especially the case when the base
materials exhibit significantly different mechanical properties, such
as soft elastomers versus rigid polymers. To facilitate performance
prediction, we present a novel method to export functionally graded
designs into finite element analysis (FEA) meshes compatible with
commercial software such as Abaqus via . INP files. This exporter
supports two types of FEA elements commonly used in solid me-
chanics simulations: brick elements (C3D8R) and tetrahedral ele-
ments (C3D4).

The FEA export process treats geometry and material assign-
ment as distinct stages. First, we sample the implicit geometric
representation of an OpenVCAD design to discretize the domain
into finite elements. For brick elements, the domain is sampled
on a structured grid within the bounding box of the OpenVCAD
design. An element is created if its corresponding grid sample lies
within or on the boundary of the implicit volume. Alternatively,

(a) Global Gradient

|

F-Grade

%

!

(b) Per-cell Gradient

¥ AR

—

Wade et al.
(c) Per-strut Gradient
G
= {/) c\}’)
F-Grade F-Grade F-Grade F-Grade
G’ransfomD G‘ransfomD

Transform Transform .-

Figure 4: Illustrations of the three grading strategies supported by OpenVCAD: (a) global gradient, (b) local per-unit-cell

gradient, and (c) local per-strut gradient.

(a) OpenVCAD Render (b) Printed Artifact

(c) Close-up

Figure 5: Algorithmic lattice generation case study: (a) Open-
VCAD software render of the multi-material lattice-filled
Stanford Bunny; (b) physical artifact printed on a Stratasys
J750 printer; and (c) close-up view detailing graded internal
lattice structures.

for tetrahedral elements, we leverage the Computational Geometry
Algorithms Library (CGAL) to generate a space filling tetrahedral
mesh from the implicit function [Alliez et al. 2024a; The CGAL
Project 2024].

Following geometry discretization, each element (brick or tetra-
hedral) must be assigned a discrete material. We accomplish this
by evaluating the multi-material distribution at the centroid of
each element, producing a set of volume fractions. Following the
probabilistic method described in the original OpenVCAD frame-
work [Wade et al. 2024], these fractions serve as probabilities for
assigning each material to an element. Figure 7 shows a gradient
interdigitated into discrete material assignments.

We adopt this discretization approach because it reflects the
current capabilities of OpenVCAD, which represents designs as
combinations of base materials rather than as property fields. While
interpolating material properties across volume fractions reduces
mesh dependence, OpenVCAD does not directly model properties
of mixtures. Instead, it exports voxelized, interdigitated designs
that mirror the behavior of multi-material printing systems (e.g.,
inkjet), leaving it to the designer to experimentally characterize

Export Time for Bunny with Varying Amount of Struts
1620

Seconds to Export to PNG Stack
[
B o [} o N
o o o o (=]
o o o o o

N
=3
o

=)

300 3000
Number of Struts in Design

Figure 6: Export times for the bunny design with increasing
numbers of struts. Each export sampled 10 billion voxels into
PNG stacks. Despite a 1000-fold increase in strut count, ex-
port time increased by only 3.4x, highlighting the scalability
of our functionally graded strut-design method for complex
models.

the resulting mixtures. Beginning with these low-level interdig-
itated models is essential for building a foundation of simulated
and experimentally verified data, which can ultimately support
higher-level models that predict the effective properties of material
blends. Meisel et al. further showed that homogenized models fail
to capture the true behavior of inkjet-printed multi-material objects
once the microstructural features exceed 2 mm [Meisel et al. 2018].

However, accurately capturing spatial gradients with this prob-
abilistic method introduces a critical challenge: element size se-
lection. A fine discretization with many small elements captures
gradients accurately but dramatically increases computational de-
mands, whereas coarser discretization sacrifices gradient fidelity.
Figure 7 illustrates this tradeoff using a simple linear gradient bar

Implicit Modeling for 3D-printed Multi-material Computational Object Design via Python

transitioning from green to white. To resolve this challenge, we in-
troduce adaptive mesh sizing, which adjusts element size according
to the local gradient complexity. Adaptive meshing is a feature that
is commonly supported by FEA meshing software, but is usually
employed to define element size to ensure geometry with fine detail
is captured.

Our adaptive meshing approach uses a user-defined sizing field,
expressed mathematically through variables and is provided pro-
vided to CGAL meshing routine. Specifically, the sizing field is
defined as a function of the local material distribution heterogene-
ity, denoted by h(x, y, z). The heterogeneity h is computed at a point
(x,y, z) by evaluating the deviation of the local material fractions
fi from a uniform distribution across n materials:

no(e_ 1)2
h(x,y,z)ZM (1)
1-1

Here, h(x, y, z) ranges from 0 (homogeneous) to 1 (maximally het-
erogeneous). Users specify the minimum and maximum element
sizes (min_cell and max_cell), and define the local cell length
L(x,y, z) as a function of h. Although a user can define complex
non-linear math expressions, we will use the following simple linear
mapping:

L(x,y,z) = min_cell + h(x,y, z) (max_cell - min_cell) (2)

This adaptive sizing ensures finer discretization where there is a
high mixture of elements, and larger elements when the design
is more homogeneous. This provides a tunable balance between
accuracy and computational efficiency (Figure 7).

OpenVCAD
Design
Top Down View

71 thousand
degrees of freedom

Coarse Mesh

22 thousand
degrees of freedom

Figure 7: Comparison of finite element discretizations for a
linear gradient bar using a coarse mesh (22 thousand DOFs),
adaptive mesh (71 thousand DOFs), and fine mesh (1.5 million
DOFs).

3.3.1 Case Study: Simulating Multi-material Lattices. To demon-
strate the application of the OpenVCAD FEA exporter, we per-
formed simulations on a body-centered cubic (BCC) lattice structure
measuring 50 mm X 50 mm X 50 mm composed of 5 unit cells per
axis, each 10 mm in dimension. The lattices were exported using
the brick element exporter without adaptive meshing, resulting
in uniform discretizations of approximately 240,000 elements per
structure. A two material gradient with rigid and soft base mate-
rials was used. Five functionally graded lattices were studied: (1)
homogeneous soft material, (2) a linear gradient transitioning from
completely soft at the bottom to fully rigid at the top, (3) a Gaussian
gradient peaking with soft material at the center, (4) a sinusoidal

gradient introducing two soft regions, and (5) per-cell local radial
gradients transitioning from rigid at the cell centers to soft at cell
boundaries.

Figure 8 compares these lattices, showing OpenVCAD renders,
corresponding FEA meshes with material sets (soft and rigid), Abaqus
simulation results, and physical prints. Abaqus simulations uti-
lized linear elastic material models (rigid material: E = 2850 MPa,
v = 0.39; soft material: E = 0.383 MPa, v = 0.50). The values for
these models were chosen based on the work of Majca-Nowak et al.
for the rigid material and Qureshi et al. for the soft material [Majca-
Nowak and Pyrzanowski 2023; Qureshi et al. 2022]. We used a static
linear simulation. The boundary conditions consisted of fixing the
bottom faces of the lattices while imposing a 5 mm displacement at
the top. As expected, simulation results show greater deformation
in regions containing predominantly softer material, validated by
physical specimens fabricated on a Stratasys J750 PolyJet printer
using Vero (rigid) and Agilus30 (soft) materials.

This case study demonstrates OpenVCAD’s capability to seam-
lessly integrate multi-material lattice design and predictive sim-
ulation, enabling informed design decisions prior to fabrication.
We are not presenting an exhaustive study on high fidelity multi-
material FEA simulation, but rather showing a demonstration of
the framework to interface OpenVCAD with simulation software.

3.4 Importing Simulation Results into
OpenVCAD

Simulation-driven design has become a cornerstone method for op-
timizing the structural performance of complex objects. Simulation
is particularly valuable when integrating multi-material function-
ally via graded materials. While established generative design tools,
such as nTopology, have successfully employed simulation results
to guide geometric topology, they offer no support for simulation of
multi-material gradients. Likewise, nTopology does not provide a
method to map simulation results into multi-material gradients. To
address this limitation, we introduce the novel SimulationField
node for OpenVCAD, enabling direct import of finite element anal-
ysis (FEA) results and subsequent mapping into functionally graded
multi-material distributions.

An OpenVCAD node must provide two essential outputs: (1) a
geometric form represented by a signed distance function and (2) a
multi-material volume fraction distribution. To efficiently meet
these requirements, especially at resolutions required by high-
resolution 3D printers that may demand billions of queries, the
SimulationField node preprocesses simulation data into suitable
intermediate structures.

The SimulationField node requires the user to specify the
original FEA mesh, in this case a tetrahedral 3D mesh, used during
simulation. Additionally, the user must provide a CSV file mapping
each node in the tetrahedral mesh to corresponding simulation
results, such as displacement values. This mapping enables the
node to interpolate simulation data into spatially varying material
gradients. The underlying FEA simulation can involve either single
or multiple materials, as the SimulationField node translates
physical simulation outputs (e.g., stress, displacement) into a new
multi-material distribution.

1
Concentration

Wade et al.

- Soft Material : OpenVCAD : Simulation : Simulation : Printed

W - Rigid Material , Render ! Setup ' Result : Result
"""" VR 2 :
o ¢ : ' ;
vt 5 1 1 '
m ne L] [.
- : : :
»n . . '
° (onco.nrrar’mn:lE’Bx i IW_I E A A A E
2 : HE AP PP '
- i ' .
=5 : : :
8 .2 E ! [H
ce ' ' !
£8: ! : :
-l S ' ' :
0] 1 :
-zsexfoﬂcentratioﬂlmx: : A ‘ A :
----------------- isssssssssssscsscsslescsseseEsEEEESES v
2 ; VY oY Y
St i Holele :
7EH : : QOC :
N TS ' > ¢ ¢ ¢ '
3 ©: : * & & v
3G : : OO :
© : » AR :

Sinusoidal
Gradient
5 Z-Lorm;an (mm} &

Concentration

Per-Cell
Gradient

-

e e

A A A A AAT

B
SANAAYP

XA p
D v erereid
D ratetetaty
OO

FAYA A A A

Figure 8: Case study of FEA simulation for multi-material lattices: (left-to-right) OpenVCAD design renders, corresponding
FEA mesh with material assignment, Abaqus simulation results, and fabricated specimens printed with rigid (Vero) and soft
(Agilus30) materials. Rows correspond to different gradient strategies as described in the text.

To derive the signed distance form, we first extract a triangu-
lated surface mesh from the imported tetrahedral FEA mesh by
identifying faces that are not shared between adjacent tetrahedra.
Subsequently, this surface mesh is converted into a sparse voxel grid
using OpenVDB, encoding the signed distance to the object’s sur-
face. A user-selected coarse grid resolution (e.g., 0.1 mm) is chosen

to balance memory usage and computational complexity. Signed
distance queries at higher resolutions (e.g., 0.027 mm for PolyJet
printers) employ efficient box interpolation within the sparse voxel
representation to determine intermediate values.

For the material distribution form, we use a volumetric interpola-
tion approach based on the simulation results provided at the nodes

Implicit Modeling for 3D-printed Multi-material Computational Object Design via Python

of the tetrahedral mesh. The algorithm for evaluating the material
distribution at arbitrary points within the volume is summarized
in Algorithm 2:

Algorithm 2 Interpolating Simulation Results for Material Distri-
bution

Require: Tetrahedral mesh 7, nodal simulation results R, query
point q, material mapping expressions &
Ensure: Multi-material distribution My
1: Find tetrahedron ¢t € 7~ containing point q
: Retrieve results R; at vertices of ¢
: Compute barycentric coordinates (A4, A2, A3, A4) of q within ¢
: Interpolate simulation result: Ry « Y7, ;R;
: Evaluate each expression in & using interpolated result Ry
: Store volume fractions into distribution map My
: return My

N s o

A significant computational challenge arises from rapidly de-
termining which tetrahedron contains a query point, especially
for finite element meshes containing large numbers of elements.
Naively checking every tetrahedron for containment would be-
come prohibitively expensive, particularly with high element count
FEA meshes. To improve performance, we employ an Axis-Aligned
Bounding Box (AABB) tree, specifically utilizing the implementa-
tion provided by the Computational Geometry Algorithms Library
[Alliez et al. 2024b; The CGAL Project 2024]. An AABB tree is a hier-
archical spatial data structure that recursively partitions space into
axis-aligned bounding boxes, each encompassing subsets of geo-
metric primitives. When performing queries the AABB tree quickly
eliminates large regions of space by checking if the query point falls
within the current bounding box. This hierarchical pruning dra-
matically reduces the number of tetrahedra that must be explicitly
checked for containment, leading to substantial performance gains
and enabling efficient, scalable querying of high-density meshes.

The implementation of the described methodology is encapsu-
lated in the SimulationField node. Users must provide a . inp file
defining the mesh, a CSV file containing nodal simulation results,
and a set of math expressions mapping simulation variables (e.g.,
displacement magnitude, stress, temperature) to material volume
fractions. The SimulationField node interprets these expressions
as volumetric fraction functions dependent on simulation results.
Variables accessible within these expressions include scalar com-
ponents (e.g., dx, dy, dz) and the magnitude of vector quantities
(1en).

Listing 5 demonstrating how to create a multi-material design
informed by simulation results using the SimulationField node
provided by the new pyvcad module.

3.4.1 Case Study: Simulation-informed Bike Seat Design. To demon-
strate the practical effectiveness of the SimulationField node, we
apply it to a real-world design scenario: optimizing the material
distribution within a 3D-printed bicycle seat. The primary goal in
this case study is to mitigate excessive deformation, particularly in
an intentionally unsupported central region, while simultaneously
preserving rider comfort by controlling the material composition
in the design volume. Figure 9 depicts the bike seat design used in
this analysis, which features fixed mounting rails at both ends but

Listing 5 pyvcad Code Bike Seat Example

import pyvcad as pv
materials = pv.default_materials()

inp_path = "bike_seat_new.inp"
point_map_path = "bike_seat_point_map.csv"
expressions = ["1en-0.000055)/0.00035",
"-(len-0.000055)/0.00035+1"]
materials = [materials.id("blue"),
materials.id("green")]

root = pv.SimulationField(inp_path, point_map_path,
expressions, materials)

no central structural support, as is typical in a bicycle seat design.
To investigate performance, we simulated the seat using a single
homogeneous soft material with properties similar to Stratasys
PolyJet material Agilus30. The finite element model, discretized
into tetrahedral elements, was subjected to loads representative of
arider’s weight. From figure 9 we see the simulations, conducted
using nTopology, revealed significant deformation concentrated in
the unsupported central area, highlighting structural inadequacies
when composed uniformly of the soft material. We chose to use
nTopology in this example, differing from the previous examples us-
ing ABAQUS, to demonstrate how our method works with multiple
FEA solvers.

Simulation Setup Simulation Results
Load Applied
Undersupported
AAA —
Fixed low deformation high deformation

Figure 9: Simulation setup and corresponding results high-
lighting excessive deformation in the unsupported central
region of a uniformly soft-material bike seat under rider
load. Arrows indicate the downward force based on a rider
sitting position.

Ideally, the entire seat would be composed of the softer material
to maximize comfort. However, given the structural demands iden-
tified by the simulation, it is clear that selective incorporation of a
more rigid material is necessary to improve structural performance.
A homogeneous mixture of soft and rigid materials across the en-
tire seat could resolve deformation issues but would unnecessarily
compromise rider comfort in adequately supported regions. Instead,
we used the SimulationField node in OpenVCAD to dynamically
vary the material mixture based on the simulated displacement
magnitude. Specifically, the simulation results, provided as nodal
displacements from the original tetrahedral mesh were exported

from nTopology. nTopology was only used as the linear elastic sim-
ulator in this case study. The simulation results were imported into
OpenVCAD, along with a set of user-defined mathematical expres-
sions mapping displacement magnitudes to corresponding volume
fractions of rigid (Vero-like) and soft (Agilus30-like) materials.

The Python snippet in Listing 5 illustrates the process of defin-
ing the SimulationField node with the required parameters: the
tetrahedral mesh (.inp file), nodal displacement data (CSV), and
material fraction expressions. This method automatically interprets
the simulation results, converting them into a spatially varying,
functionally graded material distribution.

The final multi-material design was exported from OpenVCAD
for fabrication on a Stratasys J750 Inkjet 3D printer by sampling
approximately 26.2 billion voxels, outputting the voxel data into
PNG image stacks in 24 minutes. Figure 10 compares the initial
simulation displacement field obtained from nTopology, the corre-
sponding OpenVCAD-generated multi-material gradient map, and
the fabricated artifact. As intended, the rigid material is localized
within areas of significant deformation, while regions adequately
supported by the rails remain predominantly composed of soft ma-
terial. This approach successfully balances structural integrity and
rider comfort, demonstrating the integration capabilities of Open-
VCAD to optimize multi-material additive manufacturing designs
informed directly by external simulation data.

(b) OpenVCAD Material Mapping () Inkjet Printed Artifact

(a) Simulation Result

Figure 10: Bike seat case study results demonstrating
simulation-informed multi-material optimization: (a) sim-
ulated displacement field, (b) OpenVCAD-generated multi-
material distribution informed by displacement magnitude,
and (c) final printed artifact fabricated using a Stratasys J750
printer with Vero (rigid) and Agilus30 (soft) photopolymer
materials.

4 Exporting as Meshes

To broaden compatibility with widely adopted slicing platforms,
our work presents a novel compiler module capable of exporting
volumetric, functionally graded designs into sets of standard trian-
gulated mesh files. Although this approach forgoes the fine-grained
process-parameter integration achievable through direct toolpath
coupling outlined in Wade et al. 2025, it permits spatially varying
material properties or slicing parameters to be approximated us-
ing standard slicing software [Wade et al. 2025]. The mesh export
method takes as input a user-specified number of output meshes,
effectively segmenting the continuous material fraction space into
discrete sub-regions.

A widely recognized algorithm for generating a triangulated
mesh from implicit signed-distance representations is the March-
ing Cubes algorithm [Lorensen and Cline 1987]. This algorithm

Wade et al.

identifies surfaces by sampling volumetric scalar fields at regular
intervals, generating triangle approximations of the implicit surface.
However, Marching Cubes alone only captures geometric bound-
aries and does not inherently account for multi-material gradients.
To address this, we introduce a hybrid sampling and segmentation
method described by Algorithm 3.

Algorithm 3 Hybrid Segmentation Algorithm for Multi-material
Mesh Export

Require: OpenVCAD design D, number of output meshes N, voxel
resolution r
Ensure: Set of triangulated meshes {M,»}{il
1: Divide the material fraction space into N ranges {R;}Y,
2: Sample design D at resolution r to produce a voxel grid G
storing signed distances

3: for all material ranges R; do

4 Initialize filtered voxel grid G;

5 for all voxels v € G do

6: Query D at voxel location to get multi-material volume
fractions

7: if fractions fall within range R; then

8: Copy signed distance from v to G;

9: else

10: Mark voxel as exterior in G;

11: end if

12: end for

13: Apply Marching Cubes to G; to generate mesh M;
14: end for
15: return segmented meshes {M;}Y,

4.1 Case Study: Graded Slicing Settings for a
Bike Seat

To illustrate the utility of this mesh segmentation method, we re-
visit the previously discussed bike seat design optimized through
simulation-informed multi-material distribution (Section 3.4.1). Fig-
ure 11 shows the simulation-informed multi-material bike seat
segmented into four discrete meshes based on volume fraction
ranges of the two base materials. A sample resolution of 0.5 mm
was used, resulting in approximately 20 million voxel queries and
four exported meshes, completed in less than 30 seconds.

These segmented meshes were imported into Prusa Slicer, where
each mesh was assigned distinct infill densities interactively. De-
spite using a single flexible TPU (90A) material for the entire print,
the variable infill density replicated the rigidity gradient suggested
by the original simulation. Specifically, regions containing higher
proportions of rigid material in the OpenVCAD design were as-
signed greater infill densities. The resulting g-code toolpath with
spatially varying infill densities is depicted in Figure 11(b). For
smoother gradient transitions, a higher number of mesh segments
can be exported and individually assigned slicing parameters.

The printed artifact was fabricated on a Prusa XL material ex-
trusion system using a single TPU filament. Figure 12 compares
the material extrusion printed artifact (with cut-away revealing
variable infill densities) against the Poly]Jet print presented earlier.

Implicit Modeling for 3D-printed Multi-material Computational Object Design via Python

S

submesh_0.stl

/ ~ {Jsubmesh_0.stl Material: [
’ @ Infill = 10%

v [Jsubmesh_1.stl Material: [
submesh_1.stl N @ Infill = 20%

import Tl v) submesh_2.stl Material: [slice

@ Infill = 30%

’ Material: [
' @ Infill = 40%

submesh_2.stl

L o

submesh_3.stl

Multi-material Mapping

Slicer Settings

1
1
|
]
]
1
1
1
1
1
]
i
1
1
1
1
]
1 Dsubmesh}.sl\
I
I
1
1
1
]
I
1
1
'
1
]
]
1
1
1

Prusa Slicer

G-code Preview

Figure 11: OpenVCAD bike seat segmented into four meshes based on material volume fractions. The corresponding g-code
generated using Prusa Slicer is shown alongside the slicer settings, demonstrating spatially varying infill densities based on

segmented meshes.

This figure underscores the versatility of OpenVCAD in export-
ing the same underlying design to various additive manufacturing
modalities through interchangeable export modules. Although the
material gradient fidelity achievable via voxel-based Inkjet printing
is higher, this mesh-based export significantly expands compat-
ibility, enabling OpenVCAD designs to be realized using widely
available extrusion-based systems.

Figure 12: Fabricated bike seat artifacts demonstrating mesh-
based export capability: (a) cross-sectional view showing spa-
tial infill gradients, (b) complete seat printed with single TPU
material using material extrusion, and (c) Poly]Jet print com-
parison using Vero (rigid) and Agilus30 (soft) materials.

5 Conclusion

In this work, we presented advancements for the open-source
OpenVCAD framework. The introduction of a Python-based API
(pyvcad) marks a fundamental shift from the previous domain-
specific language, increasing parametric expressiveness through
standard programming constructs and enables integration with
external libraries. Additionally, we introduced novel implicit mod-
eling techniques for multi-material lattice structures, leveraging
primitives like the GraphLattice and Tile nodes. Our methods
support comprehensive spatial grading strategies including global,
per-cell, and per-strut, enabling detailed tuning of local material
properties.

We demonstrated robust integration with finite element analysis
workflows, including direct export to Abaqus compatible meshes
with adaptive element sizing based on local material heterogene-
ity. Furthermore, we showed how simulation results can be im-
ported back into OpenVCAD through the SimulationField node,
enabling automated generation of spatially graded materials in-
formed by mechanical responses. Our case studies, including graded
bars, color calibration sheets, and an algorithmically generated
multi-material Stanford Bunny lattice, highlight the design expres-
siveness and automation capabilities of our methods. Additionally,
simulation-driven examples, such as functionally graded lattice
structures and the multi-material bicycle seat optimized for comfort
and structural performance, highlighted the benefits of integration
with simulation software.

The enhanced capabilities introduce new challenges, notably
the increased complexity in translating spatially graded material
fractions into target physical properties. Designers must possess
knowledge linking volume fractions to performance characteristics

such as shore hardness, density, and modulus, underscoring the
need for an automated translation process. Additional future work
could focus on deeper integration with advanced simulation meth-
ods, particularly exploring automated design synthesis with multi-
material geometry generation and simulation in a closed loop with
an optimizer. Further extensions could incorporate non-mechanical
simulation domains like thermal and electrical performance, broad-
ening the applicability of the framework. Future work could also
explore integrating OpenVCAD directly with commercial slicing
tools through plugins, enabling automatic assignment of materials
and process settings to exported segmented meshes. A promising
avenue is the use of the 3MF format, which supports embedding
XML-based metadata on a per-model basis [3MF Consortium nd].
Many slicers, such as PrusaSlicer, already leverage this functional-
ity to specify per-model material assignments and print settings.
Extending OpenVCAD to export segmented meshes with embed-
ded configuration data inside a single 3MF file would streamline
multi-material workflows. Such capabilities would be particularly
valuable for systems like the Bambu Labs AMS, which can print
with up to 16 distinct materials within a single print [Bambu Lab
nd].

The developments presented in this work lower the barrier to
entry for designers, facilitating broader research and industrial
adoption of fully volumetric, functionally graded design. By provid-
ing a Python-centric, open-source platform, we enable researchers
to readily experiment and integrate advanced multi-material design
into their additive manufacturing workflows. Towards this goal,
we provide the pyvcad library on the PyPi package manager and
include getting started documentation in the appendix. We invite
practitioners, researchers, and collaborators to use, extend, and
build upon these tools, fostering collective advancement toward
advancements in computational design for multi-material additive
manufacturing.

Acknowledgments

This material is based upon work supported by the Charles Stark
Draper Laboratory, Inc. under Contract No. N00030-24-C-6001. Any
opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of Strategic Systems Programs.

References

3MF Consortium. n.d.. Specification. https://3mf.io/spec/. Accessed: 2025-09-03.

Pierre Alliez, Clément Jamin, Laurent Rineau, Stéphane Tayeb, Jane Tournois, and
Mariette Yvinec. 2024a. 3D Mesh Generation. In CGAL User and Reference Manual
(6.0.1 ed.). CGAL Editorial Board. https://doc.cgal.org/6.0.1/Manual/packages.html#
PkgMesh3

Pierre Alliez, Stéphane Tayeb, and Camille Wormser. 2024b. 2D and 3D Fast Intersection
and Distance Computation. In CGAL User and Reference Manual (6.0.1 ed.). CGAL
Editorial Board. https://doc.cgal.org/6.0.1/Manual/packages.html#PkgAABBTree

Autodesk Inc. 2025. Autodesk Fusion 360 (Version 2602.1.25) [Computer software].
https://www.autodesk.com/products/fusion-360 Update 8 Jun 2025; accessed 26
Jun 2025.

Bambu Lab. n.d.. Connect AMS Hub and multi-AMS. https://wiki.bambulab.com/en/
x1/manual/Connect- AMS-Hub-and-multi- AMS. Accessed: 2025-09-03.

Cole Brauer and Daniel M. Aukes. 2019. Voxel-Based CAD Framework for Planning
Functionally Graded and Multi-Step Rapid Fabrication Processes. Proceedings of
the ASME Design Engineering Technical Conference 2A-2019 (11 2019).

Cole Brauer and Daniel M. Aukes. 2020. Automated Generation of Multi-Material
Structures Using the VoxelFuse Framework. Proceedings - SCF 2020: ACM Symposium
on Computational Fabrication (11 2020).

Wade et al.

Dassault Systémes SOLIDWORKS Corp. 2024. SOLIDWORKS (Version 2025) [Com-
puter software]. https://www.solidworks.com/ General release 15 Nov 2024;
accessed 26 Jun 2025.

Gershon Elber. 2023. A Review of a B-spline based Volumetric Representation: Design,
Analysis and Fabrication of Porous and/or Heterogeneous Geometries. Computer-
Aided Design (2023), 103587.

Pierre-Alain Fayolle, Alexander Pasko, Benjamin Schmitt, and Nikolay Mirenkov. 2005.
Constructive Heterogeneous Object Modeling Using Signed Approximate Real
Distance Functions. Journal of Computing and Information Science in Engineering 6,
3 (11 2005), 221-229.

Seymur Hasanov, Suhas Alkunte, Mithila Rajeshirke, Ankit Gupta, Orkhan Huseynov,
Ismail Fidan, Frank Alifui-Segbaya, and Allan Rennie. 2022. Review on Additive
Manufacturing of Multi-Material Parts: Progress and Challenges. Journal of Manu-
facturing and Materials Processing 6, 1 (2022).

Seymur Hasanov, Ankit Gupta, Aslan Nasirov, and Ismail Fidan. 2020. Mechanical
characterization of functionally graded materials produced by the fused filament
fabrication process. Journal of Manufacturing Processes 58 (2020), 923-935.

Jonathan Hiller and Hod Lipson. 2014. Dynamic simulation of soft multimaterial
3d-printed objects. Soft robotics 1, 1 (2014), 88-101.

Ehsan Iran-Nejad. 2024. Grasshopper Scripting: Python. https://developer.rhino3d.
com/guides/scripting/scripting-gh-python/. Last updated: November 4, 2024;
Accessed: 2025-09-03.

Evan Jones. 2025. SolidPython 2. https://github.com/SolidCode/SolidPython. Accessed:
2025-06-25.

Lin Kayser and LEAP 71. 2024. PicoGK: A compact and robust geometry kernel for
Computational Engineering. GitHub repository. https://github.com/leap71/PicoGK
commit 782400 (v1.6.0, May 23 2024).

Pascal Lienhardt. 1991. Topological models for boundary representation: a comparison
with n-dimensional generalized maps. Computer-Aided Design 23 (1 1991), 59-82.
Issue 1.

William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution 3D
surface construction algorithm. ACM SIGGRAPH Computer Graphics 21, 4 (Aug.
1987), 163-169. doi:10.1145/37402.37422

Thu Huong Luu, Christian Altenhofen, André Stork, and Dieter Fellner. 2022. GraM-
MaCAD: Interactively Defining Spatially Varying FGMs on BRep CAD Models.
In International Design Engineering Technical Conferences and Computers and In-
formation in Engineering Conference, Vol. 86212. American Society of Mechanical
Engineers, V002T02A014.

Natalia Majca-Nowak and Pawet Pyrzanowski. 2023. The Analysis of Mechanical Prop-
erties and Geometric Accuracy in Specimens Printed in Material Jetting Technology.
Materials 16, 8 (April 2023), 3014. doi:10.3390/ma16083014 Publisher: MDPI AG.

Tom McReynolds and David Blythe. 2005. Advanced graphics programming using
OpenGL. Elsevier.

Nicholas Alexander Meisel, David A Dillard, and Christopher B Williams. 2018. Impact
of material concentration and distribution on composite parts manufactured via
multi-material jetting. Rapid Prototyping Journal 24, 5 (2018), 872-879.

Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology.
ACM Trans. Graph. 32, 3, Article 27 (jul 2013), 22 pages.

Ken Museth. 2021. NanoVDB: A GPU-friendly and portable VDB data structure for
real-time rendering and simulation. In ACM SIGGRAPH 2021 Talks. 1-2.

nTopology Inc. 2025. nTop (Version 5.20) [Computer software]. https://www.ntop.com/
Released 2025; accessed 26 Jun 2025.

Arash Partow. [n.d.]. C++ Mathematical Expression Library (exprtk).

Alexander Pasko, V Adzhiev, R Cartwright, E Fausett, A Ossipov, and V Savchenko. 1999.
HyperFun project: a framework for collaborative multidimensional F-rep modeling.
In Eurographics/ACM SIGGRAPH Workshop Implicit Surfaces’ 99. Workshop Implicit
Surfaces 1999, 59-69.

Alexander Pasko, Valery Adzhiev, Benjamin Schmitt, and Christophe Schlick. 2001.
Constructive hypervolume modeling. Graphical models 63, 6 (2001), 413-442.

Alexander Pasko, Oleg Fryazinov, Turlif Vilbrandt, Pierre-Alain Fayolle, and Valery
Adzhiev. 2011. Procedural function-based modelling of volumetric microstructures.
Graphical Models 73, 5 (2011), 165-181.

Aaron Porterfield. n.d.. About Crystallon. https://ghcrystallon.github.io/Crystallon/
about/. Accessed: 2025-09-03.

ProjectSilkworm. n.d.. Silkworm: A Grasshopper-Rhino plugin for G-Code generation.
https://github.com/ProjectSilkworm/Silkworm. Accessed: 2025-09-03.

Prusa Research a.s. 2025. PrusaSlicer (Version 2.9.2) [Computer software]. https:
//github.com/prusa3d/PrusaSlicer Released 10 Apr 2025; accessed 26 Jun 2025.
Daanish Aleem Qureshi, Stephen Goffredo, Yongtae Kim, Yulong Han, Ming Guo,
Seunghwa Ryu, and Zhao Qin. 2022. Why mussel byssal plaques are tiny yet strong
in attachment. Matter 5, 2 (Feb. 2022), 710-724. doi:10.1016/j.matt.2021.12.001

Publisher: Elsevier BV.

Robert McNeel & Associates. 2023. Rhinoceros 3D (Rhino). https://www.rhino3d.com.
Version 8.1, released November 21, 2023.

Robert McNeel & Associates. n.d.. Grasshopper — algorithmic modeling for Rhino.
https://www.grasshopper3d.com/. Accessed: 2025-09-03.

Scott D Roth. 1982. Ray casting for modeling solids. Computer Graphics and Image
Processing 18, 2 (1982), 109-144.

https://3mf.io/spec/
https://doc.cgal.org/6.0.1/Manual/packages.html#PkgMesh3
https://doc.cgal.org/6.0.1/Manual/packages.html#PkgMesh3
https://doc.cgal.org/6.0.1/Manual/packages.html#PkgAABBTree
https://www.autodesk.com/products/fusion-360
https://wiki.bambulab.com/en/x1/manual/Connect-AMS-Hub-and-multi-AMS
https://wiki.bambulab.com/en/x1/manual/Connect-AMS-Hub-and-multi-AMS
https://www.solidworks.com/
https://developer.rhino3d.com/guides/scripting/scripting-gh-python/
https://developer.rhino3d.com/guides/scripting/scripting-gh-python/
https://github.com/SolidCode/SolidPython
https://github.com/leap71/PicoGK
https://doi.org/10.1145/37402.37422
https://doi.org/10.3390/ma16083014
https://www.ntop.com/
https://ghcrystallon.github.io/Crystallon/about/
https://ghcrystallon.github.io/Crystallon/about/
https://github.com/ProjectSilkworm/Silkworm
https://github.com/prusa3d/PrusaSlicer
https://github.com/prusa3d/PrusaSlicer
https://doi.org/10.1016/j.matt.2021.12.001
https://www.rhino3d.com
https://www.grasshopper3d.com/

Implicit Modeling for 3D-printed Multi-material Computational Object Design via Python

The CGAL Project. 2024. CGAL User and Reference Manual (6.0.1 ed.). CGAL Editorial
Board. https://doc.cgal.org/6.0.1/Manual/packages.html

Tigges and Wyvill. 1999. A field interpolated texture mapping algorithm for skeletal
implicit surfaces. 1999 Proceedings Computer Graphics International (1999), 25-32.

Kiril Vidimce, Alexandre Kaspar, Ye Wang, and Wojciech Matusik. 2016. Foundry:
Hierarchical material design for multi-material fabricationdoubrovski2015voxel.
UIST 2016 - Proceedings of the 29th Annual Symposium on User Interface Software
and Technology (10 2016).

Kiril Vidimce, Szu Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik. 2013. Open-
Fab: A programmable pipeline for multi-material fabrication. ACM Transactions on
Graphics 32 (7 2013). Issue 4.

Charles Wade, Devon Beck, and Robert MacCurdy. 2025. Implicit Toolpath Generation
for Functionally Graded Additive Manufacturing via Gradient-Aware Slicing. doi:10.
48550/arXiv.2505.08093 arXiv:2505.08093 [cs].

Charles Wade, Graham Williams, Sean Connelly, Braden Kopec, and Robert MacCurdy.
2024. OpenVCAD: An open source volumetric multi-material geometry compiler.
Additive Manufacturing 79 (2024), 103912. do0i:10.1016/j.addma.2023.103912

Brian Wyvill, Andrew Guy, and Eric Galin. 1999. Extending the csg tree. warping, blend-
ing and boolean operations in an implicit surface modeling system. In Computer
Graphics Forum, Vol. 18. Wiley Online Library, 149-158.

Geoff Wyvill, Craig McPheeters, and Brian Wyvill. 1986. Soft objects. In Advanced
Computer Graphics: Proceedings of Computer Graphics Tokyo’86. Springer, 113-128.

A Appendix: Getting Started with the pyvcad
Library

The Python bindings for OpenVCAD can be installed using the
command pip install OpenVCAD. This installs three modules: (1)
pyvcad, which includes the core OpenVCAD library for represent-
ing multi-material designs; (2) pyvcadviz, which provides a VTK-
based renderer for pyvcad objects; and (3) pyvcad_compilers,
which contains reference compilers for exporting PNG stacks, sur-
face meshes, and FEA-compatible meshes.

An integrated development environment (IDE) that includes a
text editor, renderer, and compiler interface in a single UI, called
VCAD Studio, is shown in Figure 13. This program is available for
download for Windows and MacOS on the OpenVCAD GitHub
page. All example code and data used in this paper are provided in
the supplementary materials.

https://doc.cgal.org/6.0.1/Manual/packages.html
https://doi.org/10.48550/arXiv.2505.08093
https://doi.org/10.48550/arXiv.2505.08093
https://doi.org/10.1016/j.addma.2023.103912
https://github.com/MacCurdyLab/OpenVCAD-Public
https://github.com/MacCurdyLab/OpenVCAD-Public

WV Open
Editor
VCAD Seript:

Python Editor VCAD Editor

1
2
3
4

Material File:

C

import pyvcad as pv

materials = pv.default_materials()
yellow = materials.id("yellow")
magenta = materials.id("nagenta")
clear = materials.id("clear")
black = materials.id("black")

Build the QR code

ar_code_base = pv.Mesh(pv.resources_path() + "examples/data/3d_models/ar_code_base.3nf", ye

ar_code = pv.Mesh(pv.resources_path() + "examples/data/3d_models/qr_code_code.3nf", black,
ar_code_boarder = pv.Mesh(pv.resources_path() + “"examples/data/3d_models/qr_code_border.3mf
ar_code_combined = pv.Union(False, [qr_code_base, qr_code, qr_code_boarder])
qr_code_combined = pv.Translate(-69,8,-1.5, qr_code_combined)

Create text, fill with gyroid, and apply gradient
openvead_text =

pv.Rotate(e,0,180, pv.Vec3(,0,8), pv.Mesh(pv.resources_path() + "examples/
gyroid =

pv.Function("sin((1.1 * pi * x) / 1.8) * cos({1.1 * pi * y) / 1.0) + sin((1.1 * pi
yellow, pv.vec3(-72, -18, -6), pv.Vec3(72, 18, 6))

gyroid_fill = pv.Intersection(False, [openvcad_text, gyroid])

text_gradient = pv.FGrade(["x/68+0.5", "~x/68+8.5"], [magenta, yellow], True, gyroid_fill)

Scale and position the text

text_gradient =

pv.Rotate (98,186,180, pv.Vec3(8,8,8), pv.Translate(15,0,0, pv.Scale(2,

Create a clear bar to hold the QR code and text
bar = pv.RectPrism(pv.Vec3(e,8,0), pv.Vec3(173, 32, 12), clear)

root = pu.Union(False, [qr_code_combined, text_gradient, bar])

Error Console

Render Preview

Render Preview

Custom - 0.15 mm
Volumetric

() Show Bounding Box

O show Origin

() Orthographic Projection

@ volumetric Shading

Wade et al.

Figure 13: The OpenVCAD Studio Integrated Development Environment with an object loaded as code and rendered volumetri-

cally.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Homogeneous Multi-material Design
	2.2 Voxel-Based Methods
	2.3 Non-voxel Methods
	2.4 OpenVCAD: Implicit Representation for Multi-Material AM
	2.5 Programming Based Computer Aided Design

	3 Methods and Case Studies
	3.1 Programming Multi-Material Designs in Python
	3.2 Multi-material Lattice Design
	3.3 Export to Finite Element Analysis
	3.4 Importing Simulation Results into OpenVCAD

	4 Exporting as Meshes
	4.1 Case Study: Graded Slicing Settings for a Bike Seat

	5 Conclusion
	Acknowledgments
	References
	A Appendix: Getting Started with the pyvcad Library

